|
|
A Novel Recommendation Approach of Electronic Literature Resources Combining Semantic and Social Features |
Yang Chen1, Liu Tingting1, Liu Lei1, Niu Ben1, Sun Jianshan2 |
1.College of Management, Shenzhen University, Shenzhen 518060 2.School of Management, Hefei University of Technology, Hefei 230009 |
|
|
Abstract With the arrival of the era of information expansion, the load on electronic literature databases will dramatically increase, and it will become increasingly difficult for users to search for their required pieces of literature. In response to this issue, the development of recommendation systems to assist the management of electronic literature databases has received extensive attention from researchers. Currently, one commonly used recommendation technique for literature databases is collaborative filtering. However, the traditional collaborative filtering algorithms, which only consider the similarity of users’ search-history, ignore several important factors, such as the users’ semantic similarity and social relationships. In this paper, we integrated a text content similarity based on topic model as well as two kinds of user similarities based on social relationships (user tag similarity and personal group similarity) into the user collaborative filtering recommender system by utilizing an unsupervised integration strategy. The experiment on the real data set shows that by adding the multiple source features, there is an enhancement and promotion effect on the recommendation accuracy, which provides strong implications for related electronic literature resource recommendation research in the future.
|
Received: 08 January 2019
|
|
|
|
1 毕强, 刘健. 基于领域本体的数字文献资源聚合及服务推荐方法研究[J]. 情报学报, 2017, 36(5): 24-32. 2 AdomaviciusG, TuzhilinA. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. 3 赵艳, 肖曼, 鞠文红, 等. 电子资源馆藏建设的关键问题: 图书馆指南[J]. 图书情报工作动态, 2012(4): 1-4. 4 BollackerK D, LawrenceS, Lee GilesC. CiteSeer: An autonomous web agent for automatic retrieval and identification of interesting publications[C]//Proceedings of the Second International Conference on Autonomous Agents. New York: ACM Press, 1998: 116-123. 5 黄义文. 大数据环境下图书馆学术资源个性化推荐服务研究[J]. 图书馆学刊, 2016(7): 78-80. 6 查先进, 李力, 严亚兰, 等. 数字图书馆环境下信息有用性和信息获取影响因素研究——信息获取自我效能的调节效果[J]. 情报学报, 2017, 36(7): 669-681. 7 陈玉, 尹桂平. 移动阅读信息资源推荐与利用策略[J]. 图书馆学研究, 2017(1): 69-72. 8 方磊. 基于移动互联网阅读平台的智能推荐体系应用研究[D]. 南京: 南京邮电大学, 2016. 9 陈俊鹏, 虞为. 基于实时新闻分析的馆藏资源推荐方法研究[J]. 中国图书馆学报, 2015, 41(6): 86-96. 10 李树青, 徐侠, 许敏佳. 基于读者借阅二分网络的图书可推荐质量测度方法及个性化图书推荐服务[J]. 中国图书馆学报, 2013, 39(3): 83-95. 11 BeelJ, GippB, LangerS, et al. Research-paper recommender systems: a literature survey[J]. International Journal on Digital Libraries, 2016, 17(4): 305-338. 12 ChakrabortyT, KrishnaA, SinghM, et al. FeRoSA: A faceted recommendation system for scientific articles[C]// Proceedings of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Heidelberg: Springer, 2016, 9652: 528-541. 13 PanL L, DaiX Y, HuangS J, et al. Academic paper recommendation based on heterogeneous graph[C]// Proceedings of the Conference on Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Heidelberg: Springer, 2015, 9427: 381-392. 14 LiuX F, WangZ J, YeF. A recommendation system algorithm based on large scale Internet environment[C]// Proceedings of the 13th Web Information Systems and Applications Conference. IEEE, 2017: 112. 15 陆璐. 基于内容的电子书和作者推荐方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. 16 曾子明, 周红. 科技文献中基于主题的社会化推荐研究[J]. 情报理论与实践, 2015, 38(3): 71-76. 17 WangZ Y, LiuY, YangJ J, et al. A personalization-oriented academic literature recommendation method[J]. Data Science Journal, 2015, 14: Article No. 17. 18 孙梦婷, 袁小群. 我国学术数据库协同过滤资源推荐研究现状探讨[J]. 出版科学, 2017, 25(4): 11-15. 19 李默, 梁永全, 赵建立. 融合相似性评价、信任度与社会网络的学术资源推荐方法研究[J]. 情报理论与实践, 2015, 38(5): 77-81. 20 曹斌, 彭宏杰, 侯晨煜, 等. 基于用户隐性反馈与协同过滤相结合的电子书籍推荐服务[J]. 小型微型计算机系统, 2017, 38(2): 334-339. 21 王燕, 欧莹元, 张继燕. 马尔科夫协同过滤模型在用户动态行为分析中的应用[J]. 无线互联科技, 2015(4): 144-146. 22 刘智超. 基于混合模型的学术论文推荐方法研究[D]. 北京: 北京邮电大学, 2015. 23 徐戈, 王厚峰. 自然语言处理中主题模型的发展[J]. 计算机学报, 2011, 34(8): 1423-1436. 24 Rosen-ZviM, GriffithsT, SteyversM, et al. The author-topic model for authors and documents[C]// Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2004: 487-494. 25 BleiD, NgA, JordanM. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 26 蔡永明, 长青. 共词网络LDA模型的中文短文本主题分析[J]. 情报学报, 2018, 37(3): 305-317. 27 Rosen-ZviM, ChemuduguntaC, GriffithsT, et al. Learning author-topic models from text corpora[J]. ACM Transactions on Information Systems, 2010, 28(1): Article No. 4. 28 WengJ S, LimE P, JiangJ, et al. TwitterRank: Finding topic-sensitive influential twitterers[C]// Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010: 261-270. 29 HuangX S, LiS Z, WangY S. Jensen-Shannon boosting learning for object recognition[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2005: 144-149. 30 JiangY C, JiaA X, FengY S, et al. Recommending academic papers via users’ reading purposes[C]// Proceedings of the Sixth ACM Conference on Recommender Systems. New York: ACM Press, 2012: 241-244. 31 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2): 163-175. 32 韩朝, 苗夺谦, 任福继, 等. 基于粗糙集知识发现的开放领域中文问答检索[J]. 计算机研究与发展, 2018, 55(5): 958-967. |
|
|
|