|
|
Construction and Visual Analysis of Academic Paper-Linked Data Based on In-depth Mining |
Qu Jiabin1,2,Ou Shiyan1,Ling Hongfei1 |
School of Public Administration, Sichuan University, Chengdu 610064 |
|
|
Abstract Since Linked Data was proposed, it has become the mainstream method of publishing structured data on the Web. With the rapid increase in linked data sets, the effective consumption and utilization of linked data has become the focus of researchers. This study intended to explore the mining and visual analysis of linked data. Firstly, we conducted in-depth mining of implicit information hidden in the metadata of academic papers in the geological field using text mining techniques. We then transformed the metadata and mined information into RDF-based semantic representation to construct the linked data of academic papers based on a newly designed “academic paper-scholar” ontology. On this basis, five visual analysis modules were designed to visualize the macro- and micro-knowledge of academic paper-linked data from multiple perspectives. The results showed that (1) the linked data constructed based on in-depth mining can deeply and comprehensively display knowledge hidden in the metadata of academic papers and (2) the visual analysis of linked data can intuitively present macro- and micro-knowledge in the form of graphics and thus facilitate users’ rapid consumption and utilization of linked data.
|
Received: 13 November 2018
|
|
|
|
1 陈烨, 赵一鸣, 姜又琦. 基于关联数据的知识组织研究述评[J]. 情报理论与实践, 2016, 39(2): 139-144. 2 欧石燕. 面向关联数据的语义数字图书馆资源描述与组织框架设计与实现[J]. 中国图书馆学报, 2012, 38(6): 58-71. 3 GlaserH, MillardI, JaffriA. RKB explorer.com: A knowledge driven infrastructure for linked data providers[C]// Proceedings of the 5th European Conference on the Semantic Web: Research and Applications. Heidelberg: Springer, 2008: 797-801. 4 赵斌. 数据可视化在上海图书馆数据展示服务中的应用[J]. 图书馆杂志, 2015, 34(2): 23-29. 5 任瑞娟, 濮德敏, 张媛. 基于五维学术关系发现的知识脉络可视化实践[J]. 大学图书馆学报, 2016, 34(1): 69-75. 6 石泽顺, 肖明. 基于RelFinder的图情学科关联数据语义关系发现实践[J]. 图书情报工作, 2017, 61(17): 139-148. 7 JavedM, PayetteS, BlakeJ, et al. VIZ–VIVO: Towards visualizations-driven linked data navigation[C]// Proceedings of the Second International Workshop on Visualization and Interaction for Ontologies and Linked Data Co-located with the 15th International Semantic Web Conference. Japan, 2016: 80-92. 8 HuY, JanowiczK, MckenzieG, et al. A linked-data-driven and semantically-enabled journal portal for scientometrics[C]// Proceedings of International Semantic Web Conference. New York: Springer, 2013: 114-129. 9 McKenzieG, JanowiczK, HuY G, et al. Linked scientometrics: Designing interactive scientometrics with linked data and semantic web reasoning[C]// Proceedings of the 12th International Semantic Web Conference. Aachen: CEUR-WS.org, 2013: 53-56. 10 AlonenM, KauppinenT, SuominenO, et al. Exploring the linked university data with visualization tools[M]. Heidelberg: Springer, 2013: 204-208. 11 陈涛, 夏翠娟, 刘炜, 等. 关联数据的可视化技术研究与实现[J]. 图书情报工作, 2015, 59(17): 113-119. 12 HeimP, HellmannS, LehmannJ, et al. RelFinder: Revealing relationships in RDF knowledge bases[C]// Proceedings of the 4th International Conference on Semantic and Digital Media Technologies: Semantic Multimedia. Heidelberg: Springer, 2009: 182-187. 13 洪娜, 钱庆, 范炜, 等. 关联数据中关系发现的可视化实践[J]. 现代图书情报技术, 2013, 29(2): 11-17. 14 曲佳彬, 欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现, 2018, 2(1): 64-75. 15 BleiD M, LaffertyJ D. Dynamic topic models[C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120. 16 曹丽娜, 唐锡晋. 基于主题模型的BBS话题演化趋势分析[J]. 管理科学学报, 2014, 17(11): 109-121. 17 MannG S, MimnoD, McCallumA. Bibliometric impact measures leveraging topic analysis[C]// Proceedings of the 6th ACM/IEEE-CS Joint Conference. New York: ACM Press, 2006: 65-74. |
|
|
|