|
|
Research on Altmetrics Evaluation Model of Academic Conference Based on GBDT |
Zhang Yang, Ye Yue, Zhang Zongxiang, She Fang, Chen Xiyu |
School of Information Management, Sun Yat-sen University, Guangzhou 510006 |
|
|
Abstract In order to spread and share academic achievements in a certain field, academic conferences serve as an inevitable and important part in the development of that subject field. In certain cases, academic conferences are favored by researchers because of their timely dissemination of knowledge. This paper collects relevant data from altmetrics indicators—Altmetrics. com and PlumX—on the international conferences on artificial intelligence from 2007 to 2014, with the help of descriptive statistics and gradient lifting decision tree. Using indicators screening, data imbalance processing, and model optimization, a meeting evaluation model based on the gradient lifting decision tree was formed. This model combines popular machine learning models with latest altmetrics indexes. It can effectively cover the deficiencies of traditional informetrics indicators and improve the accuracy of the conference evaluation model, which can enrich related research on conference evaluation and become a reference for future research.
|
Received: 28 November 2018
|
|
|
|
1 ZhuangZ M, ElmaciogluE, LeeD, et al. Measuring conference quality by mining program committee characteristics[C]// Proceedings of the ACM International Conference on Digital Libraries. New York: ACM Press, 2007: 225-234. 2 MartinsW S, Gon?alvesM A, LaenderA H F, et al. Assessing the quality of scientific conferences based on bibliographic citations[J]. Scientometrics, 2010, 83(1): 133-155. 3 NelakuditiS, GrayC, ChoudhuryR R. Snap judgement of publication quality[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2011, 15(2): 20-23. 4 LoizidesO S, KoutsakisP. On evaluating the quality of a computer science/computer engineering conference[J]. Journal of Informetrics, 2017, 11(2): 541-552. 5 王倩. h指数及其衍生指数在评价学术会议中的应用研究[J]. 科技情报开发与经济, 2015(15): 135-139. 6 肖建华, 霍国庆, 董帅, 等. 基于平衡计分卡的学术会议效果评价指标体系研究[J]. 科学学与科学技术管理, 2009, 30(12): 48-54. 7 张坤, 王文韬, 谢阳群. 机器学习在图书情报领域的应用研究[J]. 图书馆学研究, 2018(1): 47-52. 8 BornmannL. Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics[J]. Journal of Informetrics, 2014, 8(4): 895-903. 9 刘恩涛, 李国俊, 邱小花, 等. Altmetrics工具比较研究[J]. 图书馆杂志, 2015, 34(8): 85-92. 10 邱均平, 余厚强. 论推动替代计量学发展的若干基本问题[J]. 中国图书馆学报, 2015, 41(1): 4-15. 11 MeschedeC, SiebenlistT. Cross-metric compatability and inconsistencies of altmetrics[J]. Scientometrics, 2018, 115(1): 283-297. 12 FriedmanJ H. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232. 13 SakrS, AlomariM. A decade of database conferences: A look inside the program committees[J]. Scientometrics, 2012, 91(1): 173-184. 14 EckmannM, RochaA, WainerJ. Relationship between high-quality journals and conferences in computer vision[J]. Scientometrics, 2012, 90(2): 617-630. 15 张洋, 叶月. 基于多指标的学术会议动态评价研究[J]. 数字图书馆论坛, 2018(7): 37-44. 16 Altmetrics.com[EB/OL]. https://www.altmetric.com/. 17 analyticsPlum[EB/OL]. https://plumanalytics.com/learn/about-metrics/. 18 邱均平, 余厚强. 论推动替代计量学发展的若干基本问题[J]. 中国图书馆学报, 2015, 41(1): 4-15. 19 刘恩涛, 李国俊, 邱小花, 等. Altmetrics工具比较研究[J]. 图书馆杂志, 2015, 34(8): 85-92. 20 刘春丽. altmetrics工具与机构知识库的整合与效果——以PlumX为例[J]. 图书情报工作, 2015, 59(24): 39-46. 21 杨柳, 陈铭. 常用替代计量学工具之比较研究[J]. 情报理论与实践, 2015, 38(9): 114-119, 144. 22 俞立平, 刘爱军. 主成分与因子分析在期刊评价中的改进研究[J]. 情报杂志, 2014, 33(12): 94-98. 23 董敏红. 基于主成分分析的图书情报类核心期刊评价指标有效性研究[J]. 情报科学, 2010, 28(11): 1670-1672, 1678. 24 ChawlaN V, BowyerK W, HallL O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. 25 imbalanced-learn[CP/OL]. https://github.com/scikit-learn-contrib/imbalanced-learn. 26 张公让, 万飞. 基于网格搜索的SVM在入侵检测中的应用[J]. 计算机技术与发展, 2016, 26(1): 97-100. |
|
|
|