|
|
Citation Network Main Path Identification Based on Associated Attributes of Articles: Case Study from Synthetic Biology |
Wei Ling1,2,3, Liu Chunjiang2, Xu Haiyun2, Fang Shu2 |
1. School of Information and Management, Shanxi University of Finance and Economics, Taiyuan 030006; 2. Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610041; 3. University of Chinese Academy of Sciences, Beijing 100049 |
|
|
Abstract State-of-the-art citation network main path analysis methods either treat all citation relationships with equal weightage, or calculate the relevance of citations based on the content of the text. Neither nonequivalence of citation nodes nor relevance of citations based on associated attributes of articles are considered. This study uses meta paths to describe and quantify the relevance of citations based on associated attributes of articles, considering it as part of the main path traversal weight, and combines it with SPC (search path count) to construct two new indices to analyze the contribution of associated attributes of articles to main path identification. The results prove that the new traversal weight indices can identify main path characteristics of associated attributes, reveal knowledge diffusion paths in different views, and provide detailed diffusion information. This work expands the functions and application scenarios of citation network main path analysis.
|
Received: 16 May 2017
|
|
|
|
[1] Hummon N P, Doreian P.Connectivity in a citation network: The development of DNA theory[J]. Social Networks, 1989, 11(1): 39-63. [2] Hummon N P, Doreian P.Computational methods for social network analysis[J]. Social Networks, 1990, 12(4): 273-288. [3] Lu L Y, Liu J S.A survey of intellectual property rights literature from 1971 to 2012: the main path analysis. Management of Engineering & Technology (PICMET)[C]// Proceedings of 2014 Portland International Conference on IEEE, 2014: 1274-1280. [4] Liu J S, Lu L Y Y, Lu W M. Research fronts in data envelopment analysis[J]. Omega, 2016, 58: 33-45. [5] Chuang T C, Liu J S, Lu L Y Y, et al. The main paths of eTourism: trends of managing tourism through Internet[J]. Asia Pacific Journal of Tourism Research, 2017, 22(2): 213-231. [6] Hung S C, Liu J S, Lu L Y Y, et al. Technological change in lithium iron phosphate battery: the key-route main path analysis[J]. Scientometrics, 2014, 100(1): 97-120. [7] Yuan F, Miyazaki K.Understanding the dynamic nature of technological change using trajectory identification based on patent citation network in the Electric Vehicles industry[C]// Proceedings of 2014 Portland International Conference on Management of Engineering and Technology. IEEE, 2014: 2780-2790. [8] Verspagen B.Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115. [9] Liu J S, Lu L Y.An integrated approach for main path analysis: The development of the Hirsch index as an example[J]. Journal of the American Society for Information Science and Technology, 2012, 63(3): 528-542. [10] Bekkers R, Martinelli A.Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators[J]. Technological Forecasting and Social Change, 2012, 79(7): 1192-1216. [11] 隗玲, 方曙. 引文网络主路径研究进展评述及展望[J]. 情报理论与实践, 2016, 39(9): 128-133. [12] 祝清松. 语义增强的引文分析方法与应用实验研究[D]. 北京: 中国科学院文献情报中心, 2014. [13] 陈亮, 杨冠灿, 张静, 等. 面向技术演化分析的多主路径方法研究[J]. 图书情报工作, 2015, 59(10): 124-130, 115. [14] Batagelj V. Efficient algorithms for citation network analysis [EB/OL]. [2017-04-20]. http://www.researchgate.net/publication/ 1956732. [15] Sun Y Z, Han J W, Yan X F, et al.PathSim: Meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003. [16] Wouter D N, Andrey M, Vladimir B.蜘蛛: 社会网络分析技术[M]. 林枫, 译. 北京: 世界图书出版公司, 2014. [17] Hobom B.Surgery of gene: At the doorstep of synthetic biology[J]. Medizin Klinik, 1980, 75: 14-21. [18] Hendrickson C L, Devine K G, Benner S A.Probing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2°-deoxyadenosine[J]. Nucleic Acids Research, 2004, 32(7): 2241-2250. [19] Benner S A.Understanding nucleic acids using synthetic chemistry[J]. Cheminform, 2004, 36(2): 784-797. [20] Sismour A M, Lutz S, Park J H, et al.PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from human immunodeficiency Virus-1[J]. Nucleic Acids Research, 2004, 32(2): 728-735. [21] Ball P.Synthetic biology: starting from scratch[J]. Nature, 2004, 431: 624-626. [22] Benner S A, Sismour A M.Synthetic biology[J]. Nature Reviews Genetics, 2005, 6: 533-543. [23] Sismour A M, Benner S A.The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system[J]. Nucleic Acids Research, 2005, 33(17): 5640-5646. [24] Sismour A M, Benner S A.Synthetic biology[J]. Expert Opinion on Boilogical Therapy, 2005, 5(11): 1409-1414. [25] Chin J W.Programming and engineering biological networks[J]. Current Opinion in Structural Biology, 2006, 16(4): 551-556. [26] Drubin A, Way J C, Silver P A.Designing biological systems[J]. Genes & Development, 2007, 21(3): 242-254. [27] Filipovska A, Rackham O.Building a parallel metabolism within the cell[J]. ACS Chemical Biology, 2008, 3(1): 51-63. [28] Purnick P E, Weiss R.The second wave of synthetic biology: from modules to systems[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 410. [29] Carr P A, Church G M.Genome engineering[J]. Nature Biotechnology, 2009, 27(12): 1151-1162. [30] Lu T K, Collins J J.Engineering synthetic bacteriophage to combat antibiotic-resistant bacteria[C]// Proceedings of 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009, 104: 1-2. [31] Callura J M, Collins J J.Tracking, tuning, and terminating microbial physiology using synthetic riboregulators[J]. Proceedings of the National Academy of Sciences, 2010, 107(36): 898-903. [32] Khalil A S, Collins J J.Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11: 367-379. [33] Nissim L, Bar-Ziv R H. A tunable dual-promoter integrator for targeting of cancer cells[J]. Molecular Systems Biology, 2010, 6: 444. [34] Ajo-Franklin C M, Drubin D A, Eskin J A, et al. Rational design of memory in eukaryotic cells[J]. Genes & Development, 2007, 21(18): 2271-2276. [35] Anderson J C, Voigt C A, Arkin A P.Environmental signal integration by a modular and gate[J]. Molecular Systems Biology, 2007, 3(1): 133. [36] Czar M J, Cai Y, Peccoud J.Writing DNA with GenoCAD™[J]. Nucleic Acids Research, 2009, 37(Web Server issue): W40-W47. [37] Serrano L. Synthetic biology: promises and challenges[J]. Molecular Systems Boilogy, 2007, 3: Article No. 158. [38] Peccoud J, Blauvelt M F, Cai Y, et al.Targeted development of registries of biological parts[J]. PLoS ONE, 2008, 3(7): e2671. [39] Burbelo P D, Ching K H, Han B L, et al.Synthetic biology for translational research[J]. American Journal of Translational Research, 2010, 2(4): 381. [40] Weber W, Fussenegger M.Synthetic gene networks in mammalian cells[J]. Current Opinion in Biotechnology, 2010, 21(5): 690-696. [41] Rodríguez-Martínez J A, Peterson-Kaufman K J, Ansari A Z. Small-molecule regulators that mimic transcription factors[J]. Biochimica et Biophysica Acta, 2010, 1799(10-12): 768-774. [42] Ghim C M, Lee S K, Takayama S, et al.The art of reporter proteins in science: past, present and future applications[J]. BMB Reports, 2010, 43(7): 451. [43] Zhou X C, Cai S Y, Hong A L, et al.Microfluidic picoarray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences[J]. Nucleic Acids Research, 2004, 32(18): 5409-5417. [44] Tian J D, Gong H, Sheng N J, et al.Accurate multiplex gene synthesis from programmable DNA microchips[J]. Nature, 2005, 432(7020): 1050-1054. [45] McDaniel R, Weiss R. Advances in synthetic biology: on the path from prototypes to applications[J]. Current Opinion in Biotechnology, 2005, 16(4): 476-483. [46] Sprinzak D, Elowitz M B.Reconstruction of genetic circuits[J]. Nature, 2005, 438: 443-448. [47] Isaacs F J, Dwyer D J, Collins J J.RNA synthetic biology[J]. Nature Biotechnology, 2006, 24(5): 545-554. [48] Savage D F, Way J, Silver P A.Defossiling fuel: how synthetic biology can transform biofuel production[J]. ACS Chemical Biology, 2008, 3(1): 13-16. [49] Beisel C L, Bayer T S, Hoff K G, et al.Model-guided design of ligand-regulated RNAi for programmable control of gene expression[J]. Molecular Systems Biology, 2008, 4(1): 224. [50] Lucks J B, Qi L, Whitaker W R, et al.Toward scalable parts families for predictable design of biological circuits[J]. Current Opinion in Microbiology, 2008, 11: 567-573. [51] Gulati S, Rouilly V, Niu X, el al. Opportunities for microfluidic technologies in synthetic biology[J]. Journal of the Royal Society Interface, 2009, 6(Suppl 4): S493-S506. [52] Basu S, Mehreja R, Thiberge S, et al.Spatiotemporal control of gene expression with pulse-generating networks.[J] Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 6355-6360. [53] Ferber D.Synthetic biology: Microbes made to order[J]. Science, 2004, 303(5655): 158-161. [54] Win M N, Smolke C D.A modular and extensible RNA-based gene-regulatory platform for engineering cellular function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283-14288. [55] Lee S K, Chou H, Ham T S, et al.Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels[J]. Current Opinion in Biotechnology, 2008, 19(6): 556. [56] Ellis T, Wang X, Collins J J.Diversity-based, model-guided construction of synthetic gene networks with predicted functions[J]. Nature Biotechnology, 2009, 27(5): 465. [57] Mukherji S, Oudenaarden A V.Synthetic biology: understanding biological design from synthetic circuits[J]. Nature Reviews Genetics, 2009, 10: 859-871. [58] Tanouchi Y, Pai A, You L.Decoding biological principles using gene circuits[J]. Molecular Biosystems, 2009, 5(7): 695-703. [59] Kramer B P, Fussenegger M.Hysteresis in a synthetic mammalian gene network[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27): 9517-9522. [60] Kramer B P, Fischer M, Fussenegger M.Semi-synthetic mammalian gene regulatory networks[J]. Metabolic Engineering, 2005, 7(4): 241. [61] Weber W, Kramer B P, Fussenegger M.A genetic time-delay circuitry in mammalian cells[J]. Biotechnology & Bioengineering, 2007, 98(4): 894-902. [62] Weber W, Stelling J, Rimann M, et al.A synthetic time-delay circuit in mammalian cells and mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(8): 2643-2648. [63] Greber D, Fussenegger M.Mammalian synthetic biology: engineering of sophisticated gene networks[J]. Journal of Biotechnology, 2007, 130(4): 329-345. [64] Weber W, Daoud-El B M, Fussenegger M. Synthetic ecosystems based on airborne inter- and intrakingdom communication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10435-10440. [65] Andrianantoandro E, Basu S, Karig D K, et al.Synthetic biology: new engineering rules for an emerging discipline[J]. Molecular Systems Biology, 2006, 2: Article No. 2006.0028. [66] Anderson J C, Clarke E J, Arkin A P, et al.Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria[J]. Journal of Molecular Biology, 2006, 355(4): 619-627. [67] Silva-Rocha R, De L V.Noise and robustness in prokaryotic regulatory networks[J]. Annual Review of Microbiology, 2010, 64(1): 257-275. [68] de las Heras A, Carreño C A, Martínez-García E, et al. Engineering input/output nodes in prokaryotic regulatory circuits[J]. FEMS Microbiology Reviews, 2010, 34(5): 842-865. [69] Agapakis C M, Silver P A.Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks[J]. Molecular Biosystems, 2009, 5(7): 704-713. [70] Fernández-Tresguerres M E, de la Espina S M D, Gasset-Rosa F, et al. A DNA-promoted amyloid proteinopathy in Escherichia coli[J]. Molecular Microbiology, 2010, 77(6): 1456-1469. [71] Giraldo R.Amyloid assemblies: protein legos at a crossroads in bottom-up synthetic biology[J]. Chembiochem, 2010, 11(17): 2347-2357. [72] Lorenzo V D, Danchin A.Synthetic biology: discovering new worlds and new words[J]. EMBO Reports, 2008, 9: 822-827. [73] de Lorenzo V. Synthetic biology: something old, something new…[J]. BioEssays, 2010, 32: 267-270. [74] Danchin A.Bacteria as computers making computers[J]. FEMS Microbiology Reviews, 2009, 33(1): 3-26. [75] Danchin A.Myopic selection of novel information drives evolution[J]. Current Opinion in Biotechnology, 2009, 20(4): 504-508. |
|
|
|