|
|
Research on Semantic Annotation in Academic Literature |
Sun Jianjun, Pei Lei, Jiang Ting |
School of Information Management, Nanjing University, Nanjing 210093 |
|
|
Abstract Since the vast size of academic literature can present difficulties to researchers, semantic annotation is essential to rapid reading and knowledge acquisition. In order to regulate and enrich the semantic annotation system of academic literature, this paper focuses on the construction of an annotation ontology, the construction of a domain ontology of discipline domains, and the relationship between the terms in annotation ontology and domain ontology. This paper provides several instances of semantic annotation, such as labeling concepts, relationship of concepts, methods, processes and citations in academic literatures.
|
Received: 08 June 2018
|
|
|
|
[1] Tenopir C, Wang P L, Zhang Y, et al.Academic users’ interactions with ScienceDirect in search tasks: Affective and cognitive behaviors[J]. Information Processing & Management, 2008, 44(1): 105-121. [2] Rowlands I, Nicholas D, Jamali H R, et al.What do faculty and students really think about e-books?[C]// Aslib Proceedings. London: Emerald Group Publishing Limited, 2007: 489-511. [3] Renear A H, Palmer C L.Strategic reading, ontologies, and the future of scientific publishing[J]. Science, 2009, 325(5942): 828-832. [4] Gruber T R.A translation approach to portable ontology specifications[J]. Knowledge Acquisition, 1993, 5(2): 199-220. [5] Müller H M, Kenny E E, Sternberg P W.Textpresso: an ontology-based information retrieval and extraction system for biological literature[J]. PLoS Biology, 2004, 2(11): e309. [6] Ciccarese P, Soiland-Reyes S, Belhajjame K, et al.PAV ontology: provenance, authoring and versioning[J]. Journal of Biomedical Semantics, 2013, 4: 37. [7] Lebo T, Sahoo S, McGuinness D, et al. Prov-o: The prov ontology[J/OL]. W3C Recommendation, 2013. [2017-09-15]. http://www.w3.org/TR/prov-o/. [8] Ciccarese P, Ocana M, Garcia-Castro L J, et al. An open annotation ontology for science on Web 3.0[J]. Journal of Biomedical Semantics, 2011, 2: 2-4. [9] Boella G, Di Caro L, Ruggeri A, et al.Learning from syntax generalizations for automatic semantic annotation[J]. Journal of Intelligent Information Systems, 2014, 43(2): 231-246. [10] 段宇锋, 朱雯晶, 陈巧, 等. 朴素贝叶斯算法与Bootstrapping方法相结合的中文物种描述文本语义标注研究[J]. 现代图书情报技术, 2014(5): 83-89. [11] Vidal J C, Lama M, Otero-García E, et al.Graph-based semantic annotation for enriching educational content with linked data[J]. Knowledge-Based Systems, 2014, 55: 29-42. [12] Ciccarese P, Wu E, Wong G, et al.The SWAN biomedical discourse ontology[J]. Journal of Biomedical Informatics, 2008, 41(5): 739-751. [13] Gangemi A, Peroni S, Shotton D, et al.A pattern-based ontology for describing publishing workflows[C]// Proceedings of the 5th International Conference on Ontology and Semantic Web Patterns, Aachen, 2014: 2-13. [14] Constantin A, Pettifer S, Voronkov A.PDFX: fully-automated PDF-to-XML conversion of scientific literature[C]// Proceedings of the 2013 ACM Symposium on Document Engineering. New York: ACM Press, 2013: 177-180. [15] Kovriguina L, Shipilo A, Kozlov F, et al.Metadata extraction from conference proceedings using template-based approach[C]// Semantic Web Evaluation Challenge. Cham: Springer, 2015: 153-164. [16] Tkaczyk D, Szostek P, Dendek P J, et al.Cermine-automatic extraction of metadata and references from scientific literature[C]// Proceedings of 2014 11th IAPR International Workshop on Document Analysis Systems. IEEE, 2014: 217-221. [17] Han H, Giles C L, Manavoglu E, et al.Automatic document metadata extraction using support vector machines[C]// Proceedings of 2003 Joint Conference on Digital Libraries. IEEE. 2003: 37-48. [18] Kovačević A, Ivanović D, Milosavljević B, et al.Automatic extraction of metadata from scientific publications for CRIS systems[J]. Program, 2011, 45(4): 376-396. [19] Körner M, Ghavimi B, Mayr P, et al.Evaluating reference string extraction using line-based conditional random fields: A case study with german language publications[C]// Advances in Databases and Information Systems Cham: Springer, 2017: 137-145. [20] An D, Gao L, Jiang Z, et al.Citation metadata extraction via deep neural network-based segment sequence labeling[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM Press, 2017: 1967-1970. [21] Sanderson R, Ciccarese P, Van de Sompel H, et al. Open annotation data model[R]. W3C Community Draft, 2013: 8. |
|
|
|