|
|
Toward a Technical Topic Popularity Evaluation Framework Based on the ELO Model |
Chen Hongkan, Liu Jinchang, Bu Yi |
Department of Information Management, Peking University, Beijing 100871 |
|
|
Abstract Evaluating the popularity of technical topics is of great significance for decision-makers to understand market and technical development trends. However, extant indicators for evaluating popularity or recognizing weak signals still suffer from four serious issues: a lack of forward-looking perspectives, subjective and challenging adjustment of time interval thresholds, predetermined disciplinary frameworks and granularity, and difficulty in assisting intelligent decision-making with output results directly. To this end, this study introduces the concept of “expected popularity” based on the Elo rating system (ELO) model and constructs a new method for evaluating the popularity of technical topics. First, we theoretically discuss the feasibility of applying ELO methods to these tasks and take the recognition of the popularity of technical topics in the field of carbon fiber as an example to showcase its effectiveness. Compared to existing methods, the method proposed in this paper enriches the evaluation framework and provides decision-makers with more intelligence-level support.
|
Received: 06 November 2024
|
|
|
|
1 熊坚, 林国栋, 蒋晶, 等. 红外技术在针灸领域应用现状和热点可视化分析[J]. 世界科学技术-中医药现代化, 2023, 25(7): 2479-2492. 2 李薇, 张龙浩, 龚小清, 等. 基于文献计量的肺癌早期筛查技术前沿与热点分析[J]. 中国胸心血管外科临床杂志, 2022, 29(11): 1478-1484. 3 徐晓日, 刘丹琳. 我国突发公共事件舆情治理研究的热点主题与演进趋势[J]. 行政与法, 2023(6): 15-27. 4 孙艳姣. 智能制造专利热点技术竞争态势研究[J]. 制造技术与机床, 2023(10): 67-71. 5 张新猛, 刘江鹏, 范亚茹, 等. 产业链视角下专利新兴技术主题识别[J]. 情报杂志, 2023, 42(8): 96-101, 55. 6 刘盼盼, 王丽. 关系网络视角下新兴技术识别研究进展[J]. 图书情报工作, 2022, 66(11): 139-150. 7 李昌, 杨中楷, 董坤. 基于多维属性动态变化特征的新兴技术识别研究[J]. 情报学报, 2022, 41(5): 463-474. 8 Jones B F. The burden of knowledge and the “death of the renaissance man”: is innovation getting harder?[J]. The Review of Economic Studies, 2009, 76(1): 283-317. 9 Tseng Y H, Lin Y I, Lee Y Y, et al. A comparison of methods for detecting hot topics[J]. Scientometrics, 2009, 81(1): 73-90. 10 郝雯柯, 杨建林. 基于语义表示和动态主题模型的社科领域新兴主题预测研究[J]. 情报理论与实践, 2023, 46(2): 184-193. 11 胡泽文, 李甜甜. 基于LDA主题模型和扎根理论的我国金融科技领域热点主题识别与进展分析[J]. 情报科学, 2023, 41(10): 99-111. 12 李新根, 魏淑艳, 刘冬梅. 国内数字化治理研究的热点主题与演进趋势——基于CiteSpace的知识图谱分析[J]. 东南学术, 2022(2): 61-71, 247. 13 丁敬达, 钟建兰. 新兴主题属性量化研究综述[J]. 图书情报工作, 2023, 67(9): 12-22. 14 李红宇, 徐亚男, 张思洁. 我国职业教育研究热点识别与评析[J]. 河北师范大学学报(教育科学版), 2023, 25(6): 29-39. 15 牛君, 程智超. 我国新能源产业发展研究现状与展望——基于文献计量学的可视化分析[J]. 生态经济, 2024, 40(1): 211-220. 16 贾晓峰, 高芳, 耿喆. 基于文献计量的国际人体微生态研究主题分析[J]. 中国微生态学杂志, 2018, 30(12): 1402-1407. 17 刘玉屏, 祝鹏, 胡雪珺. 国际中文教师研究热点主题、演进特征与未来展望[J]. 民族教育研究, 2024, 35(1): 157-166. 18 刘成山, 杜怡然, 汪圳. 基于细粒度知识图谱的科技文献主题发现与热点分析[J]. 情报理论与实践, 2024, 47(5): 131-138. 19 胡泽文, 韩雅蓉, 王梦雅. 基于LDA-Word2Vec的图书情报领域机器学习研究主题演化与热点主题识别[J]. 现代情报, 2024, 44(4): 154-167. 20 陈琦, 张君冬, 郑婉婷, 等. 基于LDA模型的中医药人工智能领域主题演化分析[J]. 世界科学技术-中医药现代化, 2022, 24(9): 3315-3324. 21 Abramo G, D’Angelo C A, Reale E. Peer review vs bibliometrics: which method better predicts the scholarly impact of publications[J]. Scientometrics, 2019, 121(1): 537-554. 22 韩盟, 陈悦, 王玉奇, 等. 弱信号识别研究综述: 寻找微弱的未来信号[J]. 情报学报, 2023, 42(8): 996-1008. 23 Elo A E. The rating of chessplayers, past and present[M]. New York: Arco Publishing, 1978. 24 聂秀萍. 基于时间序列的学科热点主题预测[D]. 北京: 中国农业科学院, 2019. 25 邱均平, 温芳芳. 近五年来图书情报学研究热点与前沿的可视化分析——基于13种高影响力外文源刊的计量研究[J]. 中国图书馆学报, 2011, 37(2): 51-60. 26 王山, 谭宗颖. 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11): 144-153. 27 刘俊婉, 庞博, 徐硕. 基于弱信号的颠覆性技术早期识别研究[J]. 情报学报, 2023, 42(12): 1395-1411. 28 裘惠麟, 邵波. 多源数据环境下科研热点识别方法研究[J]. 图书情报工作, 2020, 64(5): 78-88. 29 荣国阳, 李长玲, 范晴晴, 等. 主题热度加速度指数——学科研究热点识别新方法[J]. 图书情报工作, 2021, 65(20): 59-67. 30 方志超. 基于多元数据对象的科学计量学热点主题识别研究[D]. 大连: 大连理工大学, 2017. 31 郑德俊, 程为. 基于三维主题特征测度的新兴主题识别研究[J]. 情报学报, 2024, 43(2): 167-180. 32 National Research Council. Intelligence analysis for tomorrow: advances from the behavioral and social sciences[M]. Washington, D.C.: The National Academies Press, 2011. 33 Priem J, Piwowar H, Orr R. OpenAlex: a fully-open index of scholarly works, authors, venues, institutions, and concepts[C]// Proceedings of the 26th International Conference on Science and Technology Indicators. Piscataway: IEEE, 2022: 1-5. 34 Grootendorst M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[OL]. (2022-03-11). https://arxiv.org/pdf/2203.05794. 35 El Akrouchi M, Benbrahim H, Kassou I. End-to-end LDA-based automatic weak signal detection in web news[J]. Knowledge-Based Systems, 2021, 212: 106650. 36 刘俊婉, 庞博, 徐硕. 基于弱信号的颠覆性技术早期识别研究[J]. 情报学报, 2023, 42(12): 1395-1411. 37 Yoon J. Detecting weak signals for long-term business opportunities using text mining of Web news[J]. Expert Systems with Applications, 2012, 39(16): 12543-12550. 38 韩盟, 陈悦, 王玉奇, 等. 基于异类数据和语义建构的新兴技术弱信号识别研究[J]. 情报学报, 2024, 43(3): 302-312. 39 Papon E A, Haque A. Fracture toughness of additively manufactured carbon fiber reinforced composites[J]. Additive Manufacturing, 2019, 26: 41-52. 40 Naghipour P, Bartsch M, Chernova L, et al. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: numerical and experimental investigations[J]. Materials Science and Engineering: A, 2010, 527(3): 509-517. 41 Mishra K, Bastola K P, Singh R P, et al. Effect of graphene oxide on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Polymer Engineering & Science, 2019, 59(6): 1199-1208. 42 Shrivastava R, Singh K K. Interlaminar fracture toughness characterization of laminated composites: a review[J]. Polymer Reviews, 2020, 60(3): 542-593. 43 Li N, Huang Y, Du F, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Letters, 2006, 6(6): 1141-1145. 44 Nguyen Dinh D, Nguyen P. The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations[J]. Materials, 2017, 10(10): 1194. 45 Ou Y F, González C, Vilatela J J. Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils[J]. Composites Part B: Engineering, 2020, 201: 108372. 46 Su Y N, Zhou F, Wei X H, et al. Enhanced mechanical and electrical properties of carbon fiber/poly (ether ether ketone) laminates via inserting carbon nanotubes interleaves[J]. Journal of Applied Polymer Science, 2020, 137(19): 48658. 47 Zheng N, Huang Y D, Liu H Y, et al. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J]. Composites Science and Technology, 2017, 140: 8-15. 48 Reia da Costa E F, Skordos A A, Partridge I K, et al. RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(4): 593-602. 49 Li Q X, Church J S, Naebe M, et al. A systematic investigation into a novel method for preparing carbon fibre-carbon nanotube hybrid structures[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 174-185. 50 Zainol Abidin M S, Herceg T, Greenhalgh E S, et al. Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure[J]. Composites Science and Technology, 2019, 170: 85-92. 51 Du X S, Liu H Y, Xu F, et al. Flame synthesis of carbon nanotubes onto carbon fiber woven fabric and improvement of interlaminar toughness of composite laminates[J]. Composites Science and Technology, 2014, 101: 159-166. 52 Akasheh F, Aglan H. Fracture toughness enhancement of carbon fiber-reinforced polymer composites utilizing additive manufacturing fabrication[J]. Journal of Elastomers & Plastics, 2019, 51(7/8): 698-711. 53 Hsiao K T, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 834-842. 54 Uddin N, Shohel M, Vaidya U K, et al. Bond strength of carbon fiber sheet on concrete substrate processed by vacuum assisted resin transfer molding[J]. Advanced Composite Materials, 2008, 17(3): 277-299. 55 Thouin M, Ghiasi H, Lessard L. Design of a carbon fiber bicycle stem using a novel internal bladder resin transfer molding technique[J]. Advanced Composites Letters, 2010, 19(1): 51-60. 56 Aurrekoetxea J, Agirregomezkorta A, Aretxaga G, et al. Impact behavior of carbon fiber/epoxy composite manufactured by vacuum-assisted compression resin transfer molding[J]. Journal of Composite Materials, 2012, 46(1): 43-49. 57 Lopez-Arraiza A, Amenabar I, Agirregomezkorta A, et al. Experimental analysis of drilling damage in carbon-fiber reinforced thermoplastic laminates manufactured by resin transfer molding[J]. Journal of Composite Materials, 2012, 46(6): 717-725. 58 Zeiler R, Kuttner C, Khalid U, et al. The role of multi-walled carbon nanotubes in epoxy nanocomposites and resin transfer molded glass fiber hybrid composites: dispersion, local distribution, thermal, and fracture/mechanical properties[J]. Polymer Composites, 2017, 38(9): 1849-1863. 59 Ball C A, Greydanus S, Swentek L, et al. Development of an epoxy carbon fiber reinforced roof frame using the high pressure resin transfer molding (HP-RTM) process[C]// Proceedings of the WCX SAE World Congress Experience. Warrendale: SAE International, 2020: 6415-6422. 60 Choi C W, Jin J W, Lee H, et al. Optimal polymerization conditions in thermoplastic-resin transfer molding process for mechanical properties of carbon fiber-reinforced PA6 composites using the response surface method[J]. Fibers and Polymers, 2019, 20(5): 1021-1028. 61 Lee J, Lim J W, Kim M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites, 2020, 41(4): 1190-1202. 62 Lee J H, Son S M, Yoo J J, et al. Thermoplastic resin transfer molding of carbon fiber reinforced polyamide 6 composite with the improved processability using zeolite particle[J]. Korea-Australia Rheology Journal, 2023, 35(1): 39-45. 63 Xu X X, Wei K, Mei M, et al. An ultrasound-assisted resin transfer molding to improve the impregnation and dual-scale flow for carbon fiber reinforced resin composites[J]. Composites Science and Technology, 2024, 255: 110710. 64 Croccolo D, De Agostinis M, Fini S, et al. Optimization of bolted joints: a literature review[J]. Metals, 2023, 13(10): 1708. 65 Bickford J H, Nassar S. Handbook of bolts and bolted joints[M]. New York: Marcel Dekker, 1998. 66 Heimbs S, Heller S, Middendorf P, et al. Low velocity impact on CFRP plates with compressive preload: test and modelling[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1182-1193. 67 Tian Z G, Zhi Q, Feng X Y, et al. Effect of preload on the weld quality of ultrasonic welded carbon-fiber-reinforced nylon 6 composite[J]. Polymers, 2022, 14(13): 2650. 68 Tong X, Meng L, Wan Y, et al. Preload relaxation behavior and its influence on the mechanical performance of bolted carbon fiber-reinforced thermoplastic sheet molding compound joints[J]. Polymer Composites, 2024, 45(10): 8810-8824. 69 Helal K, Yehia S, Hawileh R, et al. Performance of preloaded CFRP-strengthened fiber reinforced concrete beams[J]. Composite Structures, 2020, 244: 112262. 70 Zhang H B, Wang M W, Deng W, et al. Semi-physical simulation optimization method for bolt tightening process based on reinforcement learning[J]. Machines, 2022, 10(8): 637. 71 Foissac C, Daidié A, Segonds S, et al. Application of neural networks for smart tightening of aeronautical bolted assemblies[C]// Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing. Cham: Spring, 2023: 421-429. 72 Trotta A, Ziosi M, Lomonaco V. The future of ethics in AI: challenges and opportunities[J]. AI & Society, 2023, 38(2): 439-441. 73 步一, 许家伟, 黄文彬. 基于引文的科学文献定量评价: 引文影响力指标评述[J]. 图书情报知识, 2021, 38(6): 47-59, 46. 74 杜元清, 王延飞. 论情报事实[J]. 情报理论与实践, 2024, 47(10): 1-9. |
|
|
|