|
|
Reflections on the Impact of Large Language Models on the Development of Information Science |
Li Yang1,2, Sun Jianjun1,2 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023 |
|
|
Abstract The application of large language models represented by ChatGPT has a continuous profound impact on human society; different knowledge domains are “compressed” and “mapped” into successive large language models. The rise of large language models has given the information world a new form. The typical characteristics of the information world are manifested in three aspects: the massive production of artificial intelligence generated content; the rising status of machines; and the emergence of large language models as the new quality productivity engines. Information science has always exhibited a high degree of sensitivity to new technologies in line with the information world. The new form of the information world exerts a profound impact on the research issues, target tasks, theoretical systems, research paradigms, and visibility of the discipline. As a result, two different paths have emerged, namely, tool perspective and object perspective. The former involves intelligent information analysis and processing empowered by large language models and the construction and application of information large language models for diversified scenarios, whereas the latter covers topics such as good governance of artificial intelligence generated content in the context of the convergence of security and development and information users and behaviors in the era of large language models. Therefore, it is necessary to explore the academic environment, data infrastructure construction, and education and talent training to further support the development of large language models and the construction of disciplinary discourse systems.
|
Received: 17 May 2024
|
|
|
|
1 报告: 中国人工智能大模型数量全球占比36%[EB/OL]. (2024-07-08) [2024-07-14]. https://baijiahao.baidu.com/s?id=18039897 10956636867&wfr=spider&for=pc. 2 中国10亿参数规模以上大模型数量已超100个[EB/OL]. (2024-03-25) [2024-04-25]. https://www.chinanews.com.cn/gn/2024/ 03-25/10186743.shtml. 3 van Dis E A M, Bollen J, Zuidema W, et al. ChatGPT: five priorities for research[J]. Nature, 2023, 614(7947): 224-226. 4 Zhang X, Wang L M, Helwig J, et al. Artificial intelligence for science in quantum, atomistic, and continuum systems[OL]. (2023-07-17) [2024-03-25]. https://export.arxiv.org/pdf/2307.08423. 5 孙美娟, 张译心. ChatGPT: 热话题需要冷思考[N]. 中国社会科学报, 2023-03-07(2). 6 政光景, 吕鹏. 生成式人工智能与哲学社会科学新范式的涌现[J]. 江海学刊, 2023(4): 132-142, 256. 7 谢天, 邱林, 李雨曈, 等. 大模型时代的社会科学, 何去何从?[J]. 图书情报知识, 2023, 40(6): 6-9, 30. 8 王仕勇, 张成琳. 国内外ChatGPT研究综述及展望: 人文社科视角[J]. 重庆工商大学学报(社会科学版), 2023, 40(5): 1-14. 9 情报学[M/OL]// 3版. 中国大百科全书. 北京: 中国大百科全书出版社. [2024-03-25]. https://www.zgbk.com/ecph/words?SiteID=1&ID=296272&Type=bkzyb&SubID=60718. 10 陆伟, 刘家伟, 马永强, 等. ChatGPT为代表的大模型对信息资源管理的影响[J]. 图书情报知识, 2023, 40(2): 6-9, 70. 11 王静静, 叶鹰. 生成式AI及其GPT类技术应用对信息管理与传播的变革探析[J]. 中国图书馆学报, 2023, 49(6): 41-50. 12 曹树金, 曹茹烨. 从ChatGPT看生成式AI对情报学研究与实践的影响[J]. 现代情报, 2023, 43(4): 3-10. 13 刘细文, 孙蒙鸽, 王茜, 等. DIKIW逻辑链下GPT大模型对文献情报工作的潜在影响分析[J]. 图书情报工作, 2023, 67(21): 3-12. 14 刘逸伦, 黄微, 张晓君, 等. AIGC赋能的科技情报智能服务: 特征、场景与框架[J]. 现代情报, 2023, 43(12): 88-99. 15 李荣, 吴晨生, 董洁, 等. ChatGPT对开源情报工作的影响及对策[J]. 情报理论与实践, 2023, 46(5): 1-5. 16 全国哲学社会科学工作办公室. 中国特色哲学社会科学发展报告: “十三五”回顾与“十四五”展望[M]. 下卷. 北京: 中国社会科学出版社, 2021: 1592-1593. 17 陶建华, 聂帅, 车飞虎. 语言大模型的演进与启示[J]. 中国科学基金, 2023, 37(5): 767-775. 18 Yang J F, Jin H Y, Tang R X, et al. Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(6): Article No.160. 19 Guo B Y, Zhang X, Wang Z Y, et al. How close is ChatGPT to human experts? comparison corpus, evaluation, and detection[OL]. (2023-01-18) [2024-03-25]. https://arxiv.org/pdf/2301.07597. 20 米加宁, 董昌其. 大模型时代: 知识的生成式“涌现”[J]. 学海, 2024(1): 81-96, 214-215. 21 张亚勤: AI大模型时代[EB/OL]. (2023-05-08) [2024-07-14]. https://air.tsinghua.edu.cn/info/1007/2015.htm. 22 李纲, 刘学太, 巴志超. 三元世界理论再认知及其与国家安全情报空间[J]. 图书与情报, 2022(1): 14-23. 23 张海涛, 张春龙, 栾宇, 等. 哲学视角的重大突发事件图景建构研究[J]. 情报学报, 2022, 41(12): 1294-1304. 24 董春雨, 薛永红. 大数据哲学: 从机器崛起到认识方法的变革[M]. 北京: 中国社会科学出版社, 2021. 25 ChatGPT成企业应用最多生成式AI工具, 至少提升50%生产力[EB/OL]. (2023-05-30) [2024-04-10]. https://www.aixinzhijie.com/article/6819958. 26 肖鹏. 直面《恶魔之网》: 兰开斯特最后的忧思与图书馆情报学的学科关怀[J]. 图书与情报, 2019(6): 66-71. 27 丁波涛. 人工智能时代的情报学发展与创新——基于情报交流理论的视角[J]. 情报学报, 2021, 40(3): 321-332. 28 赖茂生. 数字化时代的情报学[J]. 图书情报工作, 2007, 51(4): 25-29. 29 王天恩. 信息需要: 人工智能基础研究的重要领域[J]. 河海大学学报(哲学社会科学版), 2019, 21(1): 1-10, 104. 30 中国信息通信研究院. 人工智能生成内容(AIGC)白皮书(2022年)[EB/OL]. (2022-09-02) [2024-04-10]. http://www.caict.ac.cn/kxyj/qwfb/bps/202209/t20220902_408420.htm. 31 Wang H C, Fu T F, Du Y Q, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. 32 王飞跃, 王雨桐. 数字科学家与平行科学: AI4S和S4AI的本源与目标[J]. 中国科学院院刊, 2024, 39(1): 27-33. 33 王飞跃, 缪青海, 张军平, 等. 探讨AI for Science的影响与意义: 现状与展望[J]. 智能科学与技术学报, 2023, 5(1): 1-6. 34 Xu R X, Sun Y F, Ren M J, et al. AI for social science and social science of AI: a survey[J]. Information Processing & Management, 2024, 61(3): 103665. 35 Grossmann I, Feinberg M, Parker D C, et al. AI and the transformation of social science research[J]. Science, 2023, 380(6650): 1108-1109. 36 情报分析技术[M/OL]// 3版. 中国大百科全书. 北京: 中国大百科全书出版社. [2024-04-20]. https://www.zgbk.com/ecph/words? SiteID=1&ID=26798&Type=bkzyb&SubID=60763. 37 张家年, 马费成. 立足情报服务 借力工程思维: 大数据时代情报工程学的理论构建[J]. 情报学报, 2016, 35(1): 4-11. 38 Argyle L P, Busby E C, Fulda N, et al. Out of one, many: using language models to simulate human samples[J]. Political Analysis, 2023, 31(3): 337-351. 39 张颖怡, 章成志, 周毅, 等. 基于ChatGPT的多视角学术论文实体识别: 性能测评与可用性研究[J]. 数据分析与知识发现, 2023, 7(9): 12-24. 40 Pan J Z, Razniewski S, Kalo J C, et al. Large language models and knowledge graphs: opportunities and challenges[OL]. (2023-08-11) [2024-04-20]. https://arxiv.org/pdf/2308.06374. 41 Pan S R, Luo L H, Wang Y F, et al. Unifying large language models and knowledge graphs: a roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580-3599. 42 刘挺. 从ChatGPT谈大语言模型及其应用[J]. 语言战略研究, 2023, 8(5): 14-18. 43 十七部门关于印发《“数据要素×”三年行动计划(2024—2026年)》的通知[EB/OL]. (2024-01-05) [2024-04-20]. https://www.cac.gov.cn/2024-01/05/c_1706119078060945.htm. 44 赖茂生. 学科转型, 我们准备好了吗?[J]. 情报资料工作, 2023, 44(1): 15-16. 45 Al Shboul M K I, Alwreikat A, Alotaibi F A. Investigating the use of ChatGPT as a novel method for seeking health information: a qualitative approach[J]. Science & Technology Libraries, 2024, 43(3): 225-234. 46 刘畅, 张鹏翼, 李世娟, 等. AI赋能视角下的信息行为研究——2023年信息行为研究年会综述[J]. 大学图书馆学报, 2024, 42(1): 5-10. 47 韩旭, 孙亚伟, 赵璐. 体系化人工智能与大语言模型在智能情报场景中的应用[J]. 北京邮电大学学报, 2024, 47(4): 11-19, 28. 48 何赛克, 张培杰, 张玮光, 等. 大模型时代下的决策范式转变[J]. 中国地质大学学报(社会科学版), 2023, 23(4): 82-91. 49 人工智能专题报告: 向量数据库, AI时代的技术基座[EB/OL]. (2023-06-21) [2024-05-10]. https://news.sohu.com/a/687911494_121709768. 50 李广建, 潘佳立. 人工智能技术赋能情报工作的历程与当前思考[J]. 信息资源管理学报, 2024, 14(2): 4-20. |
|
|
|