|
|
AI for Science Revolution: The “Platform Research” Paradigm from the Perspective of Knowledge Services for Innovation |
Mao Jin1,2, Zhou Fanqian1, Wang Zhuohao3 |
1.School of Information Management, Wuhan University, Wuhan 430072 2.Center for Studies of Information Resources, Wuhan University, Wuhan 430072 3.Institute of Scientific and Technical Information of China, Beijing 100038 |
|
|
Abstract Based on the scientific and technological intelligence knowledge service perspective, this paper outlines the connotation and framework of the “Platform Research” paradigm promoted by AI for Science (AI4S). According to Kuhn's paradigm theory, we discuss the inevitability of AI4S to promote innovation of the research paradigm; summarize the scientific research process using Bacon's inductive method as a framework; and elucidate the reciprocal and co-evolutionary relationship between knowledge service for innovation and the “Platform Research” paradigm as a theoretical guide. To support research and innovation activities, the main contents of the paradigm include scientific data management from the perspective of knowledge representation, universal knowledge base from the perspective of knowledge fusion, scientific hypothesis prediction from the perspective of knowledge inference, scientific experiment execution from the perspective of knowledge discovery, and industrial empowerment from the perspective of knowledge application. A framework of the paradigm from the perspective of knowledge service is proposed, which clarifies the core research content of innovative knowledge services in various key stages, and aims to become a growth point in the field of scientific and technical information research. This article provides a reference for China to seize the opportunity for research paradigm innovation.
|
Received: 14 March 2024
|
|
|
|
1 向着新一轮科学革命制高点攀登——2023科学智能峰会观察[EB/OL]. (2023-08-11) [2023-09-09]. http://www.xinhuanet.com/tech/20230811/209c487c5e6f4bd78a6cb248ab5b79cb/c.html. 2 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. (2017-07-08) [2023-10-31]. https://www.gov.cn/gongbao/content/2017/content_5216427.htm. 3 科技部关于发布科技创新2030—“新一代人工智能”重大项目2022年度项目申报指南的通知[EB/OL]. (2022-08-12) [2023-10-31]. https://www.ncsti.gov.cn/kcfw/xmsb/202208/t20220816_93841.html. 4 科技部启动“人工智能驱动的科学研究”专项部署工作[EB/OL]. (2023-03-27) [2023-10-31]. https://www.gov.cn/xinwen/2023- 03/27/content_5748495.htm. 5 Tolle K M, Tansley D S W, Hey A J G. The fourth paradigm: data-intensive scientific discovery[J]. Proceedings of the IEEE, 2011, 99(8): 1334-1337. 6 Zhang X, Wang L M, Helwig J, et al. Artificial intelligence for science in quantum, atomistic, and continuum systems[OL]. (2023-07-17) [2023-08-08]. https://arxiv.org/pdf/2307.08423v3. 7 2022科学智能峰会回顾|汤超院士: 关于AI for Science的几层意思[EB/OL]. (2022-08-15) [2025-01-11]. https://cqb.pku.edu.cn/info/1065/1851.htm. 8 Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. 9 Elmarakeby H A, Hwang J, Arafeh R, et al. Biologically informed deep neural network for prostate cancer discovery[J]. Nature, 2021, 598(7880): 348-352. 10 Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76. 11 Mikulak-Klucznik B, Go??biowska P, Bayly A A, et al. Computational planning of the synthesis of complex natural products[J]. Nature, 2020, 588(7836): 83-88. 12 The NNPDF Collaboration. Evidence for intrinsic charm quarks in the proton[J]. Nature, 2022, 608(7923): 483-487. 13 Wilkins A. Physicists surprised to discover the proton contains a charm quark[EB/OL]. (2022-08-17) [2025-01-11]. https://www.newscientist.com/article/2334076-physicists-surprised-to-discover- the-proton-contains-a-charm-quark/. 14 张双志, 李敏, 张龙鹏. 面向开放科学的知识服务智能化: 人机协同视角[J]. 情报杂志, 2022, 41(12): 158-163. 15 孙蒙鸽, 黄雨馨, 韩涛, 等. 科研智能化新趋势下知识服务的挑战与机遇[J]. 情报杂志, 2022, 41(6): 173-181, 107. 16 李立睿, 张嘉程, 张博睿. 科研智能化视域下融合智能机器人的知识服务研究[J]. 图书与情报, 2023(2): 61-68. 17 孙蒙鸽, 韩涛, 王燕鹏, 等. GPT技术变革对基础科学研究的影响分析[J]. 中国科学院院刊, 2023, 38(8): 1212-1224. 18 陆伟, 马永强, 刘家伟, 等. 数智赋能的科研创新——基于数智技术的创新辅助框架探析[J]. 情报学报, 2023, 42(9): 1009-1017. 19 王飞跃, 缪青海. 人工智能驱动的科学研究新范式: 从AI4S到智能科学[J]. 中国科学院院刊, 2023, 38(4): 536-540. 20 罗威, 罗准辰, 雷帅, 等. 智能科学家——科技信息创新引领的下一代科研范式[J]. 情报理论与实践, 2020, 43(1): 1-5, 17. 21 孙蒙鸽, 韩涛. 科研智能化与知识服务: 内涵、实现与机遇[J]. 情报理论与实践, 2021, 44(10): 41-49. 22 托马斯·库恩. 科学革命的结构[M]. 金吾伦, 胡新和, 译. 北京: 北京大学出版社, 2003. 23 秦顺, 戴柏清. 国际科研数据政策导向解析[J]. 图书情报工作, 2022, 66(13): 48-60. 24 王庆乐. 基于区块链技术的高校数字图书馆科研数据安全管理策略研究[J]. 图书馆工作与研究, 2021(12): 63-69. 25 兰彧, 王祖浩. 科学教育中跨学科理解能力测评的国际经验与启示[J]. 中国考试, 2021(8): 69-78. 26 陈劲, 张月遥, 李振东. 科学问题凝练与科研成果落地的贯通机制研究——以国家自然科学基金项目为例[J]. 科学学研究, 2023, 41(9): 1627-1637. 27 Bacon F. The new organon[M]. Cambridge: Cambridge University Press, 2000. 28 Wang H C, Fu T F, Du Y Q, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. 29 Engineering a brilliant body of work[EB/OL]. [2023-10-28]. https://www.nature.com/articles/d42473-019-00073-z. 30 王凡, 冯立强, 曹荣强. 大数据驱动的海洋人工智能服务平台设计与应用[J]. 数据与计算发展前沿, 2023, 5(2): 73-85. 31 胡吉颖, 谢靖, 钱力, 等. 基于知识图谱的科技大数据知识发现平台建设[J]. 数据分析与知识发现, 2019, 3(1): 55-62. 32 全燕, 张入迁. 平台化知识生产的逻辑偏误与AIGC下的建设进路[J]. 南京社会科学, 2023(6): 150-160. 33 Slattery A, Wen Z H, Tenblad P, et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow[J]. Science, 2024, 383(6681): eadj1817. 34 Ackoff R L. From data to wisdom[J]. Journal of Applied Systems Analysis, 1989, 16(1): 3-9. 35 孙成江, 吴正荆. 知识、知识管理与网络信息知识服务[J]. 情报资料工作, 2002, 23(4): 10-12. 36 科技自立自强之院士说|AI为基础科研带来巨大推动力和全新机遇——访中国科学院院士田中群[EB/OL]. (2023-08-07) [2023-09-11]. http://www.news.cn/fortune/2023-08/07/c_1129790092.htm. 37 刘兹恒, 曾丽莹. 我国高校科研数据管理与共享平台调研与比较分析[J]. 情报资料工作, 2017, 38(6): 90-95. 38 丁洁兰, 钱力, 常志军, 等. 科技情报智慧数据服务体系建设研究[J]. 情报理论与实践, 2024, 47(1): 30-37. 39 Xu H, Lin J L, Zhang D X, et al. Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network[J]. Nature Communications, 2023, 14(1): Article No.3095. 40 Lin W X, Zhao Z H, Zhang X M, et al. PMC-CLIP: contrastive language-image pre-training using biomedical documents[C]// Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2023: 525-536. 41 Segler M H S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604-610. 42 莫君兰, 窦永香, 开庆. 基于多源异构数据的科研团队画像的构建[J]. 情报理论与实践, 2020, 43(9): 100-106. 43 卢小宾, 霍帆帆, 王壮, 等. 数智时代的信息分析方法: 数据驱动、知识驱动及融合驱动[J]. 中国图书馆学报, 2024, 50(1): 29-44. 44 Gates A J, Ke Q, Varol O, et al. Nature’s reach: narrow work has broad impact[J]. Nature, 2019, 575(7781): 32-34. 45 朱迪, 张博闻, 程雅琪, 等. 知识赋能的新一代信息系统研究现状、发展与挑战[J]. 软件学报, 2023, 34(10): 4439-4462. 46 Chen X J, Jia S B, Xiang Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. 47 徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学: 信息科学, 2021, 51(12): 1967-1978. 48 Vasylenko A, Gamon J, Duff B B, et al. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry[J]. Nature Communications, 2021, 12: Article No.5561. 49 Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Central Science, 2018, 4(2): 268-276. 50 Davies A, Veli?kovi? P, Buesing L, et al. Advancing mathematics by guiding human intuition with AI[J]. Nature, 2021, 600(7887): 70-74. 51 Cornelio C, Dash S, Austel V, et al. Combining data and theory for derivable scientific discovery with AI-Descartes[J]. Nature Communications, 2023, 14(1): Article No.1777. 52 Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data[J]. Communications of the ACM, 1996, 39(11): 27-34. 53 Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241. |
|
|
|