|
|
Construction and Application of Event Knowledge Graph for Major Emergency Response Management |
Zhou Honglei1, Zhang Haitao1,2,3, Liu Weili1, Liu Yanhui1 |
1.School of Business and Management, Jilin University, Changchun 130012 2.Information Resource Research Center, Jilin University, Changchun 130012 3.Institute of National Development and Security Studies, Jilin University, Changchun 130012 |
|
|
Abstract To explore knowledge modeling and applications in emergencies and associate emergency management knowledge with events, this study aims to help relevant departments scientifically understand the occurrence and evolution of emergencies and improve emergency management capabilities. Based on a knowledge-driven perspective of event evolution and property association, this study proposes a process and methodology for constructing an event-knowledge graph. First, the schema layer of the event-knowledge graph is designed through event knowledge modeling, associating knowledge of emergencies, disaster-bearing events, and response management events. Second, the data layer of the event-knowledge graph is constructed through steps including event knowledge extraction, fusion, and memory. Finally, the study develops an example of an event-knowledge graph for heavy rainfall-related natural disasters and proposes applicable emergency management service scenarios. An example validation of a natural storm disaster emergency was conducted. The results demonstrate that the event-knowledge graph not only describes the type and intensity of emergencies and their spatiotemporal evolution trends but also illustrates their impact on disaster-bearing carriers and their practical utility in emergency management. This provides support for a scientific response to emergencies.
|
Received: 23 October 2023
|
|
|
|
1 张海涛, 周红磊, 李佳玮, 等. 信息不完全状态下重大突发事件态势感知研究[J]. 情报学报, 2021, 40(9): 903-913. 2 Li Y H, Liu W. Sudden event prediction based on event knowledge graph[J]. Applied Sciences, 2022, 12(21): 11195. 3 范维澄, 刘奕, 翁文国. 公共安全科技的“三角形”框架与“4+1”方法学[J]. 科技导报, 2009, 27(6): 3. 4 Guan S P, Cheng X Q, Bai L, et al. What is event knowledge graph: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7569-7589. 5 Rospocher M, van Erp M, Vossen P, et al. Building event-centric knowledge graphs from news[J]. Journal of Web Semantics, 2016, 37: 132-151. 6 Hernes M, Bytniewski A. Knowledge representation of cognitive agents processing the economy events[C]// Proceedings of the 10th Asian Conference on Intelligent Information and Database Systems. Cham: Springer, 2018: 392-401. 7 蒋勋, 苏新宁, 陈祖琴. 多维视角下应急情报管理体系的知识库构建研究[J]. 情报学报, 2017, 36(10): 1008-1022. 8 李纲, 王施运, 毛进, 等. 面向态势感知的国家安全事件图谱构建研究[J]. 情报学报, 2021, 40(11): 1164-1175. 9 Glava? G, ?najder J. Event graphs for information retrieval and multi-document summarization[J]. Expert Systems with Applications, 2014, 41(15): 6904-6916. 10 刘雅姝, 栾宇, 周红磊, 等. 基于事理图谱的重大突发事件动态演变研究[J]. 图书情报工作, 2022, 66(10): 143-151. 11 刘政昊, 曾曦, 张志剑. 面向应急管理的金融突发事件事理知识图谱构建与分析研究[J]. 信息资源管理学报, 2022, 12(3): 137-151. 12 Li Z Y, Zhao S D, Ding X, et al. EEG: knowledge base for event evolutionary principles and patterns[C]// Proceedings of the Chinese National Conference on Social Media Processing. Singapore: Springer, 2017: 40-52. 13 Akerkar R, Sajja P. Knowledge-based systems[M]. Sudbury: Jones & Bartlett Publishers, 2010: 23-29. 14 Li D Y, Yan L, Zhang X W, et al. EventKGE: event knowledge graph embedding with event causal transfer[J]. Knowledge-Based Systems, 2023, 278: 110917. 15 胡志磊, 靳小龙, 陈剑赟, 等. 事件图谱的构建、推理与应用[J]. 大数据, 2021, 7(3): 80-96. 16 Newell A. The knowledge level[J]. AI Magazine, 1981, 2(2): 1-20, 33. 17 唐旭丽, 马费成, 傅维刚, 等. 知识关联视角下的金融知识表示及风险识别[J]. 情报学报, 2019, 38(3): 286-298. 18 Ge X T, Yang Y, Chen J H, et al. Disaster prediction knowledge graph based on multi-source spatio-temporal information[J]. Remote Sensing, 2022, 14(5): 1214. 19 Liu Z Y, Cai H M, Yu H, et al. Constructing the sequential event graph for event prediction towards cyber-physical systems[C]// Proceedings of the 24th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2021: 1292-1297. 20 Chen Z Y, Wan Y W, Liu Y, et al. A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling[J]. Information Fusion, 2024, 101: 101985. 21 Chen J H, Zhong S B, Ge X T, et al. Spatio-temporal knowledge graph for meteorological risk analysis[C]// Proceedings of the 21st International Conference on Software Quality, Reliability and Security Companion. Piscataway: IEEE, 2021: 440-447. 22 Deng S, Rangwala H, Ning Y. Dynamic knowledge graph based multi-event forecasting[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2020: 1585-1595. 23 张诗莹, 李阳. 融合事理知识图谱与网络舆情分析的突发事件情报支持路径及实证研究——以危化品事故为例[J]. 信息资源管理学报, 2023, 13(4): 60-71. 24 张伟, 陈华钧, 张亦弛. 工业级知识图谱: 方法与实践[M]. 北京: 电子工业出版社, 2021: 22-35. 25 Tang T T, Liu W, Li W M, et al. Event relation reasoning based on event knowledge graph[C]// Proceedings of the 14th International Conference on Knowledge Science, Engineering and Management. Cham: Springer, 2021: 491-503. 26 栾宇, 张海涛, 刘伟利, 等. 突发事件超本体: 结构模型及构建方法[J]. 情报理论与实践, 2023, 46(3): 43-50. 27 张海涛, 刘伟利, 栾宇, 等. 重大突发事件的情景图谱构建[J]. 情报学报, 2021, 40(9): 924-933. 28 Doddington G, Mitchell A, Przybocki M A, et al. The automatic content extraction (ACE) program tasks, data, and evaluation[C]// Proceedings of the Fourth International Conference on Language Resources and Evaluation. Stroudsburg: Association of Computational Linguistics, 2004: 837-840. 29 Lu Y J, Liu Q, Dai D, et al. Unified structure generation for universal information extraction[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association of Computational Linguistics, 2022: 5755-5772. 30 Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2017: 3856-3866. 31 刘宁宁, 琚生根, 熊熙, 等. 基于胶囊网络的药物相互作用关系抽取方法[J]. 中文信息学报, 2020, 34(1): 80-86, 96. 32 吴超. 面向突发事件领域的事理图谱平台的设计与实现[D]. 成都: 电子科技大学, 2020. 33 魏明珠, 郑荣, 高志豪, 等. 融合知识图谱和深度神经网络的产业新兴技术预测模型研究[J]. 情报学报, 2022, 41(11): 1134-1148. 34 王芳, 郭雷. 数字化社会的系统复杂性研究[J]. 管理世界, 2022, 38(9): 208-221. 35 Davenport T H, Barth P, Bean R. How ‘big data’ is different[J]. MIT Sloan Management Review, 2012, 54(1): 43-46. 36 应急管理部公布2020年全国十大自然灾害[EB/OL]. (2021-01-02). https://www.mem.gov.cn/xw/yjglbgzdt/202101/t20210102_376288.shtml. 37 张真源. 论突发事件应对中的双重响应体系——兼论《突发事件应对法》的修改[J]. 交大法学, 2022(6): 158-172. |
|
|
|