|
|
Group Detection in Interest-Based Learning Communities Enhanced by Hypergraph from a Social Engagement Perspective |
Li He, Liu Jiayu, Shen Wang, Shi Qianru, Xie Mengfan |
School of Business and Management, Jilin University, Changchun130012 |
|
|
Abstract Online learning group detection in the context of the new technological revolution empowering educational innovation, is a key approach for optimizing the stratified allocation of educational resources based on the personalized characteristics of learners. Existing detection methods for interest-based learning community online learning groups primarily rely on direct behavioral data and interaction metrics of learners, focusing less on the potential level of social engagement and community structure. To cultivate a culture of autonomous learning enhanced by learner profiles in a smart digital environment, we propose a group-detection method for interest-based learning communities enhanced by a hypergraph from a social engagement perspective. Initially, a feature set representing the learner’s level of social engagement is constructed based on factors influencing users’ social engagement. Subsequently, a hypergraph convolutional network (HyperGCN)-enhanced graph clustering algorithm is proposed to overcome the issue of ineffective capture of multivariate interactions and higher-order structures of learner groups previously encountered with bipartite graph detection. Data were collected from a real-life interest-based learning community to validate the effectiveness of the proposed method. Compared with the baseline, the proposed method achieved improvements of 16.16, 9.77, 16.01, and 22.14 percentage points in accuracy (Acc), F1, normalized mutual information (NMI), and adjusted Rand index (ARI), respectively. These results not only prove the effectiveness of HyperGCN in capturing the structure of learner groups for online learning group detection tasks but also provide methodological and theoretical support for formulating and adjusting personalized education configuration strategies from the perspective of social engagement.
|
Received: 18 September 2024
|
|
|
|
1 习近平主持中央政治局第五次集体学习并发表重要讲话[EB/OL]. (2023-05-29). https://www.gov.cn/yaowen/liebiao/202305/content_6883632.htm?device=app&eqid=eb971fc50000693b000000046475a66c&eqid=d4e15373000186c20000000464902840. 2 严炜炜, 黄馨, 陈楠. 学习效能视角下的学习趣缘社群评价与优化[J]. 现代情报, 2022, 42(11): 53-60, 75. 3 Li O, Cheunkarndee T, Mechaber H F, et al. Using instagram to engage learners and build community[J]. Academic Medicine, 2024, 99(5): 586. 4 Thomas R K, Strekalova-Hughes E, Nash K T, et al. The learner profile: piloting a tool to support contextualized understanding of the learner[J]. Journal of Early Childhood Teacher Education, 2023, 44(3): 349-372. 5 Zhang S, Hui N, Zhai P Y, et al. A fine-grained and multi-context-aware learning path recommendation model over knowledge graphs for online learning communities[J]. Information Processing & Management, 2023, 60(5): 103464. 6 Meng F B, Zhang X F, Liu L B, et al. Converting readers to patients? From free to paid knowledge-sharing in online health communities[J]. Information Processing & Management, 2021, 58(3): 102490. 7 王君怡, 罗秋菊, 翟雪婷. 故宫官博的形象投射与社交媒体参与——基于贝叶斯模型与影响图的最优解推断[J]. 旅游学刊, 2023, 38(2): 66-80. 8 Halaszovich T, Nel J. Customer–brand engagement and Facebook fan-page “like” -intention[J]. Journal of Product & Brand Management, 2017, 26(2): 120-134. 9 Jin G Y, Yang H Y. The effect of learning motivation, self efficacy, and knowledge foundation on learning efficiency[J]. International Journal of Psychology, 2006, 39(5-6): 94. 10 Aguar K, Safaei S, Arabnia H R, et al. Reviving computer science education through adaptive, interest-based learning[C]// Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence. Piscataway: IEEE, 2017: 1161-1166. 11 Li X, Sun C N, Zia M A. Social influence based community detection in event-based social networks[J]. Information Processing & Management, 2020, 57(6): 102353. 12 Iacopini I, Petri G, Barrat A, et al. Simplicial models of social contagion[J]. Nature Communications, 2019, 10: 2485. 13 Shi D H, Chen G R. Simplicial networks: a powerful tool for characterizing higher-order interactions[J]. National Science Review, 2022, 9(5): nwac038. 14 Ghoshal G, Zlati? V, Caldarelli G, et al. Random hypergraphs and their applications[J]. Physical Review E, 2009, 79(6): 066118. 15 Li J T, Liu G, Lu S Q. Constructing e-learning communities of interest based on learner’s rating prediction[C]// Proceedings of the 4th International Conference on Computer Science & Education. Piscataway: IEEE, 2009: 1785-1789. 16 Gelman B U, Beckley C, Johri A, et al. Online urbanism: interest-based subcultures as drivers of informal learning in an online community[C]// Proceedings of the Third (2016) ACM Conference on Learning. New York: ACM Press, 2016: 21-30. 17 Fan Y. Interactive AI virtual teaching resource intelligent recommendation algorithm based on similarity measurement on the internet of things platform[J]. Journal of Testing and Evaluation, 2024, 52(3): 1650-1662. 18 Aldahmash H, Alothaim A, Mirza A. Identifying learning leaders in online social networks based on community of practice theoretical framework and information entropy[J]. IEEE Access, 2024, 12: 116622-116636. 19 李成赞, 黎建辉, 王学志, 等. 基于引文网络社区发现的数据推荐研究[J]. 情报学报, 2021, 40(8): 879-886. 20 聂世民, 杜彦辉, 芦天亮, 等. 局部社区发现算法研究综述[J]. 软件导刊, 2020, 19(5): 271-275. 21 Bo D Y, Wang X, Shi C, et al. Structural deep clustering network[C]// Proceedings of the Web Conference 2020. New York: ACM Press, 2020: 1400-1410. 22 Shin H, Perdue R R. Customer nontransactional value cocreation in an online hotel brand community: driving motivation, engagement behavior, and value beneficiary[J]. Journal of Travel Research, 2022, 61(5): 1088-1104. 23 Li H Y, Liu H B, Shin H H, et al. Impacts of user-generated images in online reviews on customer engagement: a panel data analysis[J]. Tourism Management, 2024, 101: 104855. 24 Sun M F, Sun S J. Users’ engagement in WeChat-based support communities: a multilevel perspective[J]. Information Processing & Management, 2024, 61(2): 103604. 25 Lee D, Hosanagar K, Nair H S. Advertising content and consumer engagement on social media: evidence from Facebook[J]. Management Science, 2018, 64(11): 5105-5131. 26 Lee S Y, Hansen S S, Lee J K. What makes us click “like” on Facebook? Examining psychological, technological, and motivational factors on virtual endorsement[J]. Computer Communications, 2016, 73: 332-341. 27 Ma D D, Li S Q, Du J T, et al. Engaging voluntary contributions in online review platforms: the effects of a hierarchical badges system[J]. Computers in Human Behavior, 2022, 127: 107042. 28 刘嘉宇, 李贺, 沈旺, 等. 融合多源异构在线评论的开放式创新社区创意采纳预测研究[J]. 情报学报, 2024, 43(1): 48-60. 29 Hu Z W, Cui J J, Lin A. Identifying potentially excellent publications using a citation-based machine learning approach[J]. Information Processing & Management, 2023, 60(3): 103323. 30 沈旺, 时倩如, 王俊尧, 等. 基于超图的在线社交网络信息传播模型研究[J]. 情报学报, 2023, 42(3): 354-364. 31 Kim M, Kim J. Destination authenticity as a trigger of tourists’ online engagement on social media[J]. Journal of Travel Research, 2020, 59(7): 1238-1252. 32 Di Gangi P M, Wasko M M. Social media engagement theory: exploring the influence of user engagement on social media usage[J]. Journal of Organizational and End User Computing, 2016, 28(2): 53-73. 33 Ahmed S, Madrid-Morales D. Is it still a man’s world? Social media news use and gender inequality in online political engagement[J]. Information, Communication & Society, 2021, 24(3): 381-399. 34 Nahapiet J, Ghoshal S. Social capital, intellectual capital, and the organizational advantage[J]. Academy of Management Review, 1998, 23(2): 242-266. 35 张玉晨, 翟姗姗, 许鑫, 等. 微博“中V”用户的传播特征及其引导力研究——以罗一笑事件为例[J]. 图书情报工作, 2018, 62(11): 79-87. 36 黄静, 朱丽娅, 周南. 企业家微博信息对其形象评价的影响机制研究[J]. 管理世界, 2014(9): 107-119. 37 Simon C, Brexendorf T O, Fassnacht M. The impact of external social and internal personal forces on consumers’ brand community engagement on Facebook[J]. Journal of Product & Brand Management, 2016, 25(5): 409-423. 38 骆方, 姜力铭, 田雪涛, 等. 小学生羞怯特质预测及语言风格模型构建[J]. 心理学报, 2021, 53(2): 155-169. 39 Gao R, Hao B B, Li H, et al. Developing simplified Chinese psychological linguistic analysis dictionary for microblog[C]// Proceedings of the International Conference on Brain and Health Informatics. Cham: Springer, 2013: 359-368. 40 Li J, Xu X, Ngai E W T. Does certainty tone matter? Effects of review certainty, reviewer characteristics, and organizational niche width on review usefulness[J]. Information & Management, 2021, 58(8): 103549. 41 王伟军, 黄英辉, 李颖, 等. 基于微博公众情感状态的新产品市场预测研究[J]. 情报学报, 2017, 36(5): 511-522. 42 Liu D, Santhanam R, Webster J. Toward meaningful engagement: a framework for design and research of gamified information systems[J]. MIS Quarterly, 2017, 41(4): 1011-1034. 43 Yadati N, Nimishakavi M, Yadav P, et al. HyperGCN: a new method of training graph convolutional networks on hypergraphs[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2019: Article No.135. 44 陈悦, 王康, 宋超, 等. 一种用于技术融合与演化路径探测的新方法: 技术群相似度时序分析法[J]. 情报学报, 2021, 40(6): 565-574. 45 曾智, 赵书庆, 刘欢, 等. 基于事件驱动的超图卷积网络的谣言检测方法[J]. 计算机研究与发展, 2024, 61(8): 1982-1992. 46 Caron M, Bojanowski P, Joulin A, et al. Deep clustering for unsupervised learning of visual features[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 139-156. 47 Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. 48 夏火松, 李保国, 杨培. 基于改进k-means聚类的在线新闻评论主题抽取[J]. 情报学报, 2016, 35(1): 55-65. 49 廖列法, 姚秀. 融合BERT与改进深度自动编码器的专利聚类[J]. 计算机工程与设计, 2023, 44(12): 3628-3634. 50 朱卫坪, 陈晓峰, 张萍, 等. 基于t-SNE降维与k-means聚类算法的化工厂节能减排分析[J]. 自动化应用, 2022(1): 10-13. 51 张洁凡. 在线学习社区的集体话语与披露空间[J]. 中国青年研究, 2022(1): 111-119. 52 Zhang P, Gao H, Hu Z T, et al. A bias-variance evaluation framework for information retrieval systems[J]. Information Processing & Management, 2022, 59(1): 102747. 53 Zhao Y H, Da J W, Yan J Q. Detecting health misinformation in online health communities: incorporating behavioral features into machine learning based approaches[J]. Information Processing & Management, 2021, 58(1): 102390. 54 蒋翠清, 宋凯伦, 丁勇, 等. 基于用户生成内容的潜在客户识别方法[J]. 数据分析与知识发现, 2018, 2(3): 1-8. 55 Wong S T, Too C W, Yap W S, et al. Medical equipment recognition using deep transfer learning[J]. Journal of Intelligent & Fuzzy Systems, 2022, 43(1): 1001-1010. 56 李艳燕. 科技赋能教育创新: 学习环境的变革与升级[J]. 人民论坛·学术前沿, 2023(20): 73-79. 责任编辑 冯家琪) |
|
|
|