|
|
Research on the Profile and Identification Method of Young Scientific and Technological Talents |
Zhang Yang1, Huang Zixuan1, Zhu Jiaqi2,3 |
1.School of Information Management, Sun Yat-sen University, Guangzhou 510006 2.The Center for Studies of Hong Kong, Macao and Pearl River Delta, Sun Yat-sen University, Guangzhou 510275 3.Institute of Guangdong, Hong Kong and Macao Development Studies, Sun Yat-sen University, Guangzhou 510275 |
|
|
Abstract In the context of reforming talent evaluation in science and technology to address the issue of the “four only” and establish new standards, the utilization of data-driven technology to objectively and comprehensively uncover the potential of talents and create a tagging system for identifying young talents holds great significance for the early discovery and allocation of talents, as well as for promoting national scientific and technological innovation. This study introduces a method for profiling and identifying young scientific and technological talents. First, a youth scientific and technological talent profile is constructed from six dimensions: basic attributes, research direction, academic productivity, academic influence, innovation potential, and cooperation ability, in line with the current evaluation orientation of talent evaluation. Second, a talent profile model is developed based on knowledge graphs, and multi-source data are collected to build a profile database. Finally, young scientific and technological talents are identified through unsupervised clustering analysis and supervised data search. The experimental test was conducted on young scholars in the field of information resource management. The results demonstrate that this method comprehensively explores the characteristics and inherent patterns of talents, meeting the actual needs of talent identification with good accuracy and showing promising feasibility, effectiveness, and interpretability.
|
Received: 14 March 2024
|
|
|
|
1 宋培彦, 冯超慧, 龙晨翔, 等. 基于颠覆性指数优化的细分领域优秀科技人才发现研究[J]. 情报杂志, 2022, 41(5): 61-65. 2 Li X L, Foo C S, Tew K L, et al. Searching for rising stars in bibliography networks[C]// Proceedings of the 14th International Conference on Database Systems for Advanced Applications. Heidelberg: Springer, 2009: 288-292. 3 新华社. 习近平出席中央人才工作会议并发表重要讲话[EB/OL]. (2021-09-28) [2023-12-17]. https://www.gov.cn/xinwen/2021-09/28/content_5639868.htm. 4 习近平: 高举中国特色社会主义伟大旗帜 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[EB/OL]. (2022-10-25) [2023-12-24]. https://www.gov.cn/xinwen/2022-10/25/content_5721685.htm. 5 完善科技创新人才发现培养激励机制[N/OL]. 学习时报, (2020-08-14) [2023-12-17]. https://paper.cntheory.com/html/2020-08/14/nw.D110000xxsb_20200814_3-A2.htm. 6 11234.1万! 我国科技人力资源总量世界第一, 而且越来越年轻[EB/OL]. (2022-06-25) [2023-12-27]. https://m.thepaper.cn/baijiahao_18742388. 7 报告发布! 我国稳居世界首位[EB/OL]. (2023-12-15) [2023-12-27]. https://mp.weixin.qq.com/s/VwcsV2cKpyoEQmg5s7VJKQ. 8 索传军, 于淼, 牌艳欣, 等. 数据驱动的学术评价理论框架研究[J]. 图书情报工作, 2024, 68(1): 5-12. 9 Ning Z L, Liu Y Q, Kong X J. Social gene—a new method to find rising stars[C]// Proceedings of the 4th International Symposium on Networks, Computers and Communications. Piscataway: IEEE, 2017: 78-83. 10 牛斌. 青年科技人才评价体系构建——以陕西省为例[D]. 西安: 西北大学, 2011. 11 冯涛, 王成军, 贾欢. 基于粗糙集的青年科技人才评价指标体系构建[J]. 科技管理研究, 2015, 35(11): 62-65, 70. 12 彭珍, 贺德方, 彭洁, 等. 以质量为导向的科技人才评价发现机制研究[J]. 科技管理研究, 2015, 35(9): 53-55, 61. 13 江艳萍, 夏琬钧, 赵颖梅, 等. 基于文献计量方法的全球潜力华人青年学者发现与评价策略研究[J]. 情报杂志, 2019, 38(7): 178-183. 14 田瑞强, 刘洢颖, 姚长青, 等. 基于专利文献的创新科技人才识别研究[J]. 情报杂志, 2018, 37(8): 71-77. 15 舒予, 张黎俐, 张雅晴. 海外高水平学者发现与评价策略研究[J]. 现代情报, 2018, 38(6): 93-98. 16 Panagopoulos G, Tsatsaronis G, Varlamis I. Detecting rising stars in dynamic collaborative networks[J]. Journal of Informetrics, 2017, 11(1): 198-222. 17 Zhu L, Zhu D H, Wang X F, et al. An integrated solution for detecting rising technology stars in co-inventor networks[J]. Scientometrics, 2019, 121(1): 137-172. 18 杜伟静, 李翀, 王宇宸, 等. Web of Science科研社区挖掘算法研究[J]. 小型微型计算机系统, 2020, 41(12): 2465-2469. 19 Daud A, Abbas F, Amjad T, et al. Finding rising stars through hot topics detection[J]. Future Generation Computer Systems, 2021, 115: 798-813. 20 Rodriguez-Barcenas G. Cluster algorithm method for profile analysis of scientific researchers[J]. E-Ciencias de la Información, 2022, 12(2): 103-127. 21 刘向, 刘香, 余博文. 创新二重性视角下明星发明人类型的早期识别[J]. 数据分析与知识发现, 2023, 7(2): 119-128. 22 Cooper A R D. About Face 3: the essentials of interaction design[M]. New York: John Wiley & Sons, 2007. 23 Baxter K, Courage C, Caine A K. Understanding your users: a practical guide to user research methods[M]. 2nd ed. Waltham: Morgan Kaufmann, 2015. 24 赵刚, 姚兴仁. 基于用户画像的异常行为检测模型[J]. 信息网络安全, 2017, 17(7): 18-24. 25 秦成磊, 章成志. 大数据环境下同行评议面临的问题与对策[J]. 情报理论与实践, 2021, 44(4): 99-112. 26 范晓玉, 窦永香, 赵捧未, 等. 融合多源数据的科研人员画像构建方法研究[J]. 图书情报工作, 2018, 62(15): 31-40. 27 高扬, 池雪花, 章成志, 等. 杰出人才精准画像构建研究——以智能制造领域为例[J]. 图书馆论坛, 2019, 39(6): 90-97. 28 王东, 李青, 张志刚, 等. 科研人员画像构建方法研究[J]. 情报学报, 2022, 41(8): 812-821. 29 董文慧, 熊回香, 杜瑾, 等. 基于学者画像的科研合作者推荐研究[J]. 数据分析与知识发现, 2022, 6(10): 20-34. 30 Sateli B, L?ffler F, K?nig-Ries B, et al. ScholarLens: extracting competences from research publications for the automatic generation of semantic user profiles[J]. PeerJ Computer Science, 2017, 3: e121. 31 Pei R M, Porter A L. Profiling leading scientists in nanobiomedical science: interdisciplinarity and potential leading indicators of research directions[J]. R&D Management, 2011, 41(3): 288-306. 32 徐曾旭林, 谢靖, 于倩倩. 人才多元评价模型设计方法研究[J]. 数据分析与知识发现, 2021, 5(8): 122-131. 33 熊回香, 景紫薇, 杨梦婷. 在线学术资源中知识图谱的应用研究综述[J]. 情报资料工作, 2020, 41(3): 61-68. 34 中共中央办公厅 国务院办公厅印发《关于分类推进人才评价机制改革的指导意见》[EB/OL]. (2018-02-06) [2022-12-27]. https://www.gov.cn/gongbao/content/2018/content_5271732.htm. 35 Zhang J, Xia F, Wang W, et al. CocaRank: a collaboration caliber-based method for finding academic rising stars[C]// Proceedings of the 25th International Conference Companion on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 395-400. 36 张洋, 朱嘉麒, 王媛媛, 等. 图情学科研究的范式思考——以科学评价为例[J]. 图书情报工作, 2021, 65(12): 20-26. 37 Daud A, Song M, Hayat M K, et al. Finding rising stars in bibliometric networks[J]. Scientometrics, 2020, 124(1): 633-661. 38 周园春, 王卫军, 乔子越, 等. 科技大数据知识图谱构建方法及应用研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 957-987. 39 步一, 许家伟, 黄文彬. 基于引文的科学文献定量评价: 引文影响力指标评述[J]. 图书情报知识, 2021, 38(6): 47-59, 46. 40 刘琳琳. 基于原始性创新的科研人员创新潜力研究[J]. 科学管理研究, 2014, 32(3): 101-104. 41 吕冬晴, 阮选敏, 李江, 等. 跨学科知识融合对D指数的影响[J]. 情报学报, 2022, 41(3): 263-274. 42 Real Statistics Using Excel. Brillouin’s diversity index[EB/OL]. [2022-12-29]. http://www.real-statistics.com/descriptive-statistics/diversity-indices/brillouins-diversity-index/. 43 邱均平, 胡博, 徐中阳, 等. 学者学术话语权评价指标体系的构建与应用研究——以有机化学领域为例[J]. 情报理论与实践, 2024, 47(2): 43-52. 44 刘六生, 茶世俊. 新文科建设中的教师学术领导力探析[J]. 教育科学, 2021, 37(3): 82-88. |
|
|
|