|
|
Path Identification and Disruptive Innovation of Technology R&D Based on Analysis of Patent Citation Network |
Lu Wanhui |
Chinese Academy of Social Science Evaluation Studies, Chinese Academy of Social Sciences, Beijing 100732 |
|
|
Abstract Against the background of the increasingly fierce competition among great powers in terms of international science and technology, scientific and technological advances have become a key factor in the world economic and political competition pattern. Clarifying the subject of technological competition and the path of technological evolution is an important issue for achieving breakthroughs in the paths of technology innovative development. In this study, starting from the path-dependence and technology discontinuity theories, and leveraging patent mining of high-persistence knowledge contribution, identification of the main path of technological evolution and detection of disruptive innovation signals were realized based on the hierarchical perspective of patent citation network. Empirical research and analysis were carried out by taking the field of semiconductor materials as an example. Wide bandgap semiconductor materials are giving rise to a disruptive change in the new generation of power electronics and optoelectronic technology world-wide. By mining the technological evolution path and detecting disruptive innovation signals in the field of semiconductor materials, some technologies in this field with strong signals of disruptive innovation were identified. The results can help the scientific and industrial circles understand the technical fields and provide intelligent support for the development context and layout of technology research and development. The method constructed in this study concerning the path-dependent and disruptive innovation signal detection of technology research and development based on patent citation network analysis also features strong field expansion.
|
Received: 23 March 2023
|
|
|
|
1 James H. Deglobalization: the rise of disembedded unilateralism[J]. Annual Review of Financial Economics, 2018, 10: 219-237. 2 冯昭奎. 论新科技革命对国际竞争关系的影响[J]. 国际展望, 2017, 9(5): 1-20, 167-168. 3 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2022-10-15]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. 4 李正风. 如何准确理解国家战略科技力量[J]. 中国科技论坛, 2022(4): 1-8. 5 万小萍, 刘向, 闫肖婷, 等. 基于关联分析的技术演进路径发现[J]. 情报学报, 2018, 37(11): 1087-1094. 6 Cecere G, Corrocher N, Gossart C, et al. Lock-in and path dependence: an evolutionary approach to eco-innovations[J]. Journal of Evolutionary Economics, 2014, 24(5): 1037-1065. 7 周波, 冷伏海. 演绎逻辑与归纳逻辑视角下的颠覆性技术识别方法研究述评[J]. 情报学报, 2022, 41(9): 980-990. 8 张晓林. 美国NRC颠覆性技术持续预测系统浅析[J]. 中国工程科学, 2018, 20(6): 117-121. 9 刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学, 2018, 20(6): 7-13. 10 刘红叶, 揭筱纹. 路径依赖分析法在战略管理研究中的应用[J]. 西南民族大学学报(人文社会科学版), 2016, 37(2): 99-102. 11 David P A. Clio and the economics of QWERTY[J]. American Economic Association, 1985, 75(2): 332-337. 12 张春勋, 赖景生. 技术创新、路径依赖与主导产业演替的障碍及突破研究[J]. 生产力研究, 2008(3): 104-106. 13 黄颖. 基于专利文献的技术演化路径识别方法研究[D]. 北京: 北京理工大学, 2018. 14 逯万辉, 谭宗颖. 基于知识基因游离与重组的领域主题演化研究[J]. 情报理论与实践, 2019, 42(2): 101-107. 15 何大安, 吴振宇. 创新模式转换与赶超路径选择——基于技术-产品生命周期视角的理论分析[J]. 浙江学刊, 2022(5): 66-76. 16 Epicoco M. Knowledge patterns and sources of leadership: mapping the semiconductor miniaturization trajectory[J]. Research Policy, 2013, 42(1): 180-195. 17 Ho M H C, Lin V H, Liu J S. Exploring knowledge diffusion among nations: a study of core technologies in fuel cells[J]. Scientometrics, 2014, 100(1): 149-171. 18 Kim J, Shin J. Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures[J]. Scientometrics, 2018, 116(3): 1439-1459. 19 Hummon N P, Dereian P. Connectivity in a citation network: the development of DNA theory[J]. Social Networks, 1989, 11(1): 39-63. 20 张娴, 方曙. 专利引用网络主路径方法研究述评与展望[J]. 图书情报工作, 2016, 60(20): 140-148. 21 陈亮, 杨冠灿, 张静, 等. 面向技术演化分析的多主路径方法研究[J]. 图书情报工作, 2015, 59(10): 124-130, 115. 22 Block C, Wustmans M, Laibach N, et al. Semantic bridging of patents and scientific publications—the case of an emerging sustainability-oriented technology[J]. Technological Forecasting and Social Change, 2021, 167: 120689. 23 Christensen C M. The innovator’s dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business School Press, 1997. 24 刘柳, 吴新年. 基于技术来源和初始目标市场视角的颠覆性技术创新演化模式分析[J]. 科技导报, 2023, 41(4): 104-113. 25 刘笑, 揭永琴, 胡雯. 颠覆性创新的概念嬗变、边界拓展与未来研究展望[J]. 创新科技, 2023, 23(3): 1-11. 26 张枢盛, 陈继祥. 颠覆性创新演进、机理及路径选择研究[J]. 商业经济与管理, 2013(5): 39-48. 27 揭永琴, 刘笑, 宋燕飞. 国际颠覆性创新研究现状及演进路径——基于VOSviewer的可视化分析[J]. 技术与创新管理, 2022, 43(5): 524-534. 28 Kenagy J W, Christensen C M. Disruptive innovation: a new diagnosis for health care’s “financial flu”[J]. Healthcare Financial Management, 2002, 56(5): 62-66. 29 苏鹏, 苏成, 潘云涛. 颠覆性技术识别方法发展现状及启示[J]. 图书情报工作, 2019, 63(20): 129-138. 30 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. 31 Anderson P, Tushman M L. Technological discontinuities and dominant designs: a cyclical model of technological change[J]. Administrative Science Quarterly, 1990, 35(4): 604-633. 32 Martinelli A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry[J]. Research Policy, 2012, 41(2): 414-429. 33 Mina A, Ramlogan R, Tampubolon G, et al. Mapping evolutionary trajectories: applications to the growth and transformation of medical knowledge[J]. Research Policy, 2007, 36(5): 789-806. 34 孙晓玲, 李冰, 杨阳, 等. 科学知识对技术知识遗传的影响研究——基于多引用代与语义内容视角[J]. 科学学与科学技术管理, 2019, 40(2): 3-15. 35 吴可凡, 王伟, 张世玉, 等. 技术不连续性视角下颠覆性技术识别方法研究[J]. 情报理论与实践, 2022, 45(10): 125-131. 36 Park H, Magee C L. Quantitative identification of technological discontinuities[J]. IEEE Access, 2019, 7: 8135-8150. 37 Martinelli A, Nomaler ?. Measuring knowledge persistence: a genetic approach to patent citation networks[J]. Journal of Evolutionary Economics, 2014, 24(3): 623-652. 38 Jaffe A B, Trajtenberg M. Patents, citations, and innovations[M]. Cambridge: The MIT Press, 2005. 39 黎欢, 彭爱东. 专利引文三种关键技术挖掘方法比较分析——以全息摄影技术为例[J]. 图书情报工作, 2013, 57(20): 98-103. 40 隗玲, 方曙. 引文网络主路径研究进展评述及展望[J]. 情报理论与实践, 2016, 39(9): 128-133. 41 Park H, Magee C L. Tracing technological development trajectories: a genetic knowledge persistence-based main path approach[J]. PLoS One, 2017, 12(1): e0170895. 42 Tushman M L, Anderson P. Technological discontinuities and organizational environments[J]. Administrative Science Quarterly, 1986, 31(3): 439-465. 43 Noke H, Perrons R K, Hughes M. Strategic dalliances as an enabler for discontinuous innovation in slow clockspeed industries: evidence from the oil and gas industry[J]. R&D Management, 2008, 38(2): 129-139. 44 王茹, 张阳武. 专利引文分析中的数据源选择——基于USPTO和EPO专利的引文数据对比[J]. 江苏科技信息, 2013(18): 18-22. 45 张虎胆, 杨冠灿, 吴恒. 审查员引文是否应作为专利引文“噪音”被剔除[J]. 图书情报知识, 2013(6): 77-83. 46 United States Patent and Trademark Office. Patent public search[EB/ OL]. [2023-10-10]. https://www.uspto.gov/patents/search/patent-public-search. 47 蔡永香. 第3代半导体产业发展现状、特点及建议[J]. 新材料产业, 2021(5): 2-6. 48 旷嵩. 新型非易失性存储器检错纠错电路设计[D]. 成都: 电子科技大学, 2021. 49 饶江, 何邦贵, 陈芳锐, 等. 印刷电子技术的研究综述[J]. 传感器与微系统, 2023, 42(5): 1-5, 11. 50 辛凯耀, 杨文, 夏建白, 等. 超宽禁带二维半导体材料与器件研究进展[J]. 中国科学: 物理学 力学 天文学, 2022, 52(9): 6-35. 51 吴菲菲, 张亚茹, 黄鲁成, 等. 基于专利的氧化锌宽禁带半导体材料技术中外比较[J]. 情报杂志, 2015, 34(11): 62-68, 149. 52 许彦亭, 郭俊梅, 王传军, 等. 贵金属溅射靶材的研究进展[J]. 机械工程材料, 2021, 45(8): 8-14, 102. |
|
|
|