|
|
Interdisciplinary Measurement Research Based on Reference Literature and Text Content Subject Classification |
Lyu Qi1, Shangguan Yanhong2, Li Rui1 |
1.School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046 2.School of Management, Zhengzhou Shengda University, Zhengzhou 451191 |
|
|
Abstract Currently, the world is facing several scientific challenges that require collaborative efforts from multiple fields and disciplines to solve them in various ways. Therefore, grasping the development trend of interdisciplinary integration and exploring the degree of interdisciplinary research in different disciplines is an important research direction. This paper combines reference and text content information to construct a citation embedding SCIBERT attention model, which classifies journal literature by discipline and conducts interdisciplinary measurement research based on the results of discipline classification. Simultaneously, the feasibility and effectiveness of the method proposed in this study are verified by comparing it with interdisciplinary measures of single input references and text content. Research has found that integrating text content and reference information can effectively achieve disciplinary classification of journal literature, which is better than disciplinary classification with a single input of information. A disciplinary classification based on references and text content can effectively conduct interdisciplinary measurement. The granularity of the disciplinary classification system will affect the disciplinary classification effectiveness of journal literature.
|
Received: 07 September 2023
|
|
|
|
1 李江. “跨学科性”的概念框架与测度[J]. 图书情报知识, 2014(3): 87-93. 2 徐璐, 李长玲, 荣国阳. 期刊的跨学科引用对跨学科知识输出的影响研究——以图书情报领域为例[J]. 情报杂志, 2021, 40(7): 182-188. 3 Wagner C S, Roessner J D, Bobb K, et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature[J]. Journal of Informetrics, 2011, 5(1): 14-26. 4 Mugabushaka A M, Kyriakou A, Papazoglou T. Bibliometric indicators of interdisciplinarity: the potential of the Leinster-Cobbold diversity indices to study disciplinary diversity[J]. Scientometrics, 2016, 107(2): 593-607. 5 Wang X F, Wang Z N, Huang Y, et al. Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories[J]. Scientometrics, 2017, 111(3): 2023-2039. 6 Zhang L, Rousseau R, Gl?nzel W. Diversity of references as an indicator of the interdisciplinarity of journals: taking similarity between subject fields into account[J]. Journal of the Association for Information Science and Technology, 2016, 67(5): 1257-1265. 7 Bonaccorsi A, Melluso N, Massucci F A. Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach[J]. Scientometrics, 2022, 127(12): 6961-6991. 8 Fujita M, Okudo T, Terano T, et al. Analyzing two approaches in interdisciplinary research: individual and collaborative[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2021, 25(3): 301-309. 9 Zhang W Y, Shi S S, Huang X L, et al. The distinctiveness of author interdisciplinarity: a long-neglected issue in research on interdisciplinarity[J]. Journal of Information Science, 2022, 48(1): 90-105. 10 Karlov?ec M, Mladeni? D. Interdisciplinarity of scientific fields and its evolution based on graph of project collaboration and co-authoring[J]. Scientometrics, 2015, 102(1): 433-454. 11 吕冬晴, 阮选敏, 李江, 等. 跨学科知识融合对D指数的影响[J]. 情报学报, 2022, 41(3): 263-274. 12 杨辰毓妍, 范少萍, 蔡荣, 等. 医学领域学科交叉性和论文影响力关系及其测度模型构建[J]. 中华医学图书情报杂志, 2020, 29(11): 24-30. 13 张雪, 张志强. 学科交叉研究系统综述[J]. 图书情报工作, 2020, 64(14): 112-125. 14 Porter A L, Cohen A S, David Roessner J, et al. Measuring researcher interdisciplinarity[J]. Scientometrics, 2007, 72(1): 117-147. 15 Porter A L, Roessner D J, Heberger A E. How interdisciplinary is a given body of research?[J]. Research Evaluation, 2008, 17(4): 273-282. 16 逯万辉. 基于共被引网络群体中心度的我国人文社会科学领域知识扩散网络研究[J]. 图书馆杂志, 2020, 39(2): 80-86. 17 陈琼, 朱庆华, 闵华, 等. 基于领域主题的学科交叉特征识别方法研究——以医学信息学为例[J]. 现代情报, 2022, 42(4): 11-24. 18 赵鸿玉, 王旭. 开放科学背景下跨学科研究的知识流动特征与演化趋势——以“五计学”研究为例[J]. 情报科学, 2022, 40(4): 107-117. 19 刘雪立, 赵俊玲. 图书情报学期刊和论文的跨学科强度与其学术影响力的关系[J]. 中国科技期刊研究, 2021, 32(3): 411-417. 20 任静静, 王芳, 李铭禄. 诺贝尔获奖成果的跨学科趋势与特征——基于诺贝尔生理学或医学奖的分析[J]. 科学学与科学技术管理, 2021, 42(5): 51-62. 21 Zhang H H, Wang R W, Zhang R J, et al. Characterizing interdisciplinarity of Nobel laureates' key publications[J]. Current Science, 2019, 117(7): 1148-1152. 22 Karmakar M, Singh V K, Pinto D. Measuring interdisciplinarity of research articles: an analysis of inter-relatedness of different parameters[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(2): 2477-2485. 23 Pluchino A, Burgio G, Rapisarda A, et al. Exploring the role of interdisciplinarity in physics: success, talent and luck[J]. PLoS One, 2019, 14(6): e0218793. 24 张琳, 刘冬东, 吕琦, 等. 论文学科交叉测度研究: 从全部引文到章节引文[J]. 情报学报, 2020, 39(5): 492-499. 25 李亚婷. 图书情报学的学科交叉研究进展[J]. 情报科学, 2017, 35(11): 156-160, 171. 26 温芳芳, 杨倩倩, 李翔宇. 我国人文社会科学学科交叉性的测度及其演化规律研究——基于国家社科基金关键词耦合分析[J]. 现代情报, 2022, 42(3): 157-167. 27 陈红丽, 张自然, 叶佳鑫, 等. 基于ESI数据的学科交叉宏观态势测度研究[J]. 情报科学, 2021, 39(1): 96-103. 28 Kim H, Park H, Song M. Developing a topic-driven method for interdisciplinarity analysis[J]. Journal of Informetrics, 2022, 16(2): 101255. 29 刘丽帆, 张恒, 章成志. 基于学术文献引文内容的跨学科知识流动研究[J]. 情报理论与实践, 2022, 45(6): 24-31, 47. 30 熊文靓, 付慧真. 基于主题挖掘模型的跨学科性研究主题及其演化研究[J]. 情报科学, 2021, 39(11): 117-126. 31 Nichols L G. A topic model approach to measuring interdisciplinarity at the National Science Foundation[J]. Scientometrics, 2014, 100(3): 741-754. 32 Jin S A, Song M. Topic modeling based interdisciplinarity measurement in the informatics related journals[J]. Journal of the Korean Society for Information Management, 2016, 33(1): 7-32. 33 黄颖, 张琳, 孙蓓蓓, 等. 跨学科的三维测度——外部知识融合、内在知识会聚与科学合作模式[J]. 科学学研究, 2019, 37(1): 25-35. 34 吕琦, 上官燕红, 张琳, 等. 基于文本内容自动分类的跨学科测度研究[J]. 数据分析与知识发现, 2023, 7(4): 56-67. 35 上官燕红. 认知视角下期刊文献的学科分类及其跨学科测度研究[D]. 郑州: 华北水利水电大学, 2023. |
|
|
|