|
|
Identification of Disruptive Technologies and Prediction of Diffusion Trends: Conceptual Model and Empirical Analysis |
Wang Kang, Chen Yue, Wang Yuqi, Han Meng |
The Institute of Science of Science and S&T Management & WISE Lab, Dalian University of Technology, Dalian 116024 |
|
|
Abstract Identifying and assessing the disruptive potential and diffusion trends of a technology can provide a basis for precise decision-making regarding the allocation of scientific and technological resources and advanced layout of future industries for the country and government. This study first constructs a conceptual model for identifying disruptive technologies and predicting their diffusion trends. Subsequently, based on this model, using the 3D printing field as an example, disruptive patents are identified from among outliers and influence dimensions, and disruptive technologies are extracted. Finally, based on the identification of disruptive patents, automatic labeling and strategic coordinates are applied to technology topic diffusion paths. A new multistate automatic labeling technology topic diffusion trend prediction method is proposed to reveal the dynamic diffusion relationship between core, edge, mature, emerging, and other positional themes. An inherent logical relationship among symbiosis, matching, and the association between outlier patents and disruptive technologies is established through further research. Thus, identifying disruptive technologies from the perspective of outlier patents is feasible. The disruptive technologies in the field of 3D printing from 1955 to 2017 were mainly distributed in three directions: high-end equipment manufacturing, biopharmaceuticals, and materials. The prominent technological fields were transportation, engines/pumps/turbines, biomaterial analysis, semiconductors, and environmental technology. The predicted trend of topic diffusion in multi-state automatic labeling technology indicates that the future development potential of biomedical 3D printing technology is enormous.
|
Received: 24 October 2023
|
|
|
|
1 Defense Advanced Research Projects Agency. Advancing national security through fundamental research[EB/OL]. [2023-05-10]. https://www.darpa.mil/about-us/advancing-national-security-through-fundamental-research. 2 曹晓阳. 通过重大颠覆性技术把握产业未来、抓住未来产业[J]. 科技中国, 2023(8): F0002. 3 潘一如, 毛进, 李纲. 基于引文网络的高颠覆性专利知识扩散特征研究[J]. 数据分析与知识发现, 2023, 7(10): 1-14. 4 王康, 陈悦, 宋超, 等. 颠覆性技术: 概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. 5 Barnett V, Lewis T, Abeles F. Outliers in statistical data[J]. Physics Today, 1979, 32(9): 73-74. 6 Lee J, Park S, Lee J. Technology opportunity analysis based on machine learning[J]. Axioms, 2022, 11(12): 708. 7 Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41(3): Article No.15. 8 Hawkins D M. Identification of outliers[M]. Dordrecht: Springer, 1980. 9 Kneeland M K, Schilling M A, Aharonson B S. Exploring uncharted territory: knowledge search processes in the origination of outlier innovation[J]. Organization Science, 2020, 31(3): 535-557. 10 Yoon J, Kim K. Detecting signals of new technological opportunities using semantic patent analysis and outlier detection[J]. Scientometrics, 2012, 90(2): 445-461. 11 Song K, Kim K, Lee S. Identifying promising technologies using patents: a retrospective feature analysis and a prospective needs analysis on outlier patents[J]. Technological Forecasting and Social Change, 2018, 128: 118-132. 12 Jee J, Shin H, Kim C, et al. Six different approaches to defining and identifying promising technology through patent analysis[J]. Technology Analysis & Strategic Management, 2022, 34(8): 961-973. 13 Zhou Y, Dong F, Liu Y F, et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool[J]. Scientometrics, 2021, 126(2): 969-994. 14 王康, 陈悦. 基于异质性专利的颠覆性技术早期识别研究[J]. 科学学研究, 2023, 41(8): 1364-1375. 15 Aharonson B S, Schilling M A. Mapping the technological landscape: measuring technology distance, technological footprints, and technology evolution[J]. Research Policy, 2016, 45(1): 81-96. 16 Gibbert M, Nair L B, Weiss M, et al. Using outliers for theory building[J]. Organizational Research Methods, 2021, 24(1): 172-181. 17 Rodriguez A, Tosyali A, Kim B, et al. Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery[J]. IEEE Transactions on Engineering Management, 2016, 63(4): 426-437. 18 Jeon D, Ahn J M, Kim J, et al. A doc2vec and local outlier factor approach to measuring the novelty of patents[J]. Technological Forecasting and Social Change, 2022, 174: 121294. 19 Milovidov V. Hearing the sound of the wave: what impedes one’s ability to foresee innovations?[J]. Foresight and STI Governance, 2018, 12(1): 88-97. 20 伊惠芳, 刘细文, 龙艺璇. 技术创新全视角下技术机会发现研究进展[J]. 图书情报工作, 2021, 65(7): 132-142. 21 Zanella G, Liu C Z, Choo K K R. Understanding the trends in blockchain domain through an unsupervised systematic patent analysis[J]. IEEE Transactions on Engineering Management, 2023, 70(6): 1991-2005. 22 Li X, Wu Y D, Cheng H L, et al. Identifying technology opportunity using SAO semantic mining and outlier detection method: a case of triboelectric nanogenerator technology[J]. Technological Forecasting and Social Change, 2023, 189: 122353. 23 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170. 24 Kaplan S, Vakili K. The double-edged sword of recombination in breakthrough innovation[J]. Strategic Management Journal, 2015, 36(10): 1435-1457. 25 纪亚琨, 余翔, 张奔, 等. 专利网络视角下的潜在颠覆性技术识别——以自动驾驶领域为例[J]. 情报杂志, 2022, 41(12): 46-50, 139. 26 Jia W F, Xie Y P, Zhao Y N, et al. Research on disruptive technology recognition of China’s electronic information and communication industry based on patent influence[J]. Journal of Global Information Management, 2021, 29(2): 148-165. 27 Bloodworth I. A search for discriminative linguistic markers in ICT practitioner discourse, for the ex-ante identification of disruptive innovation[J]. Proceedings of the IEEE, 2012, 6(9): 1511-1519. 28 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. 29 刘玉梅, 温馨, 孟翔飞. 基于技术轨道跃迁的突破性技术预测方法及应用研究[J]. 情报杂志, 2021, 40(11): 39-45, 15. 30 范明姐. 基于多源异构数据的颠覆性技术早期识别研究[D]. 北京: 北京工业大学, 2020. 31 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. 32 王康, 陈悦. 技术融合视角下基于专利的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(4): 29-36, 134. 33 韩芳, 张生太, 冯凌子, 等. 基于专利文献技术融合测度的突破性创新主题识别——以太阳能光伏领域为例[J]. 数据分析与知识发现, 2021, 5(12): 137-147. 34 Narin F, Hamilton K S, Olivastro D. The increasing linkage between U.S. technology and public science[J]. Research Policy, 1997, 26(3): 317-330. 35 王雪冰. 复杂网络视角下颠覆性技术创新扩散机制研究[D]. 长春: 吉林大学, 2022. 36 王丽, 刘细文. 基于专利数据的技术主题扩散量化研究与实现[J]. 数据分析与知识发现, 2022, 6(6): 1-10. 37 黄鲁成, 王宁. 专利视角下的技术扩散研究综述[J]. 科学学与科学技术管理, 2011, 32(10): 27-34. 38 陈悦, 王康, 宋超, 等. 一种用于技术融合与演化路径探测的新方法: 技术群相似度时序分析法[J]. 情报学报, 2021, 40(6): 565-574. 39 颜端武, 苏琼, 张馨月. 基于时序主题关联演化的科学领域前沿探测研究[J]. 情报理论与实践, 2019, 42(7): 144-150. 40 吴可凡, 王伟, 张世玉, 等. 技术不连续性视角下颠覆性技术识别方法研究[J]. 情报理论与实践, 2022, 45(10): 125-131. 41 于光辉, 宁钟, 李昊夫. 基于专利和Bass模型的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(8): 1467-1473, 1536. 42 梁镇涛, 毛进, 李纲. 融合“科学-技术”知识关联的高颠覆性专利预测方法[J]. 情报学报, 2023, 42(6): 649-662. 43 陈育新, 卢俊, 韩毅. 基于专利文献的颠覆性技术识别研究——以人工智能为例[J]. 情报学报, 2022, 41(11): 1124-1133. 44 邓建军, 刘安蓉, 曹晓阳, 等. 颠覆性技术早期识别方法框架研究——基于科学端的视角[J]. 中国科学院院刊, 2022, 37(5): 674-684. |
|
|
|