|
|
Knowledge Element Logical Relation Extraction Method |
Cheng Wei1, Zheng Dejun1, Zhu Mengdie2, Cong Tianshi1, Wang Yanhong2 |
1.College of Information Management, Nanjing Agricultural University, Nanjing 210095 2.School of Information Management, Nanjing University, Nanjing 210023 |
|
|
Abstract The extraction of knowledge element logical relation focuses on the syntactic structure and syntactic features of the context and realizes context-scoped relation extraction by defining trigger word rules through contextual functional semantic dependencies. To eliminate the structural limitation of context, this study proposes a new method for the extraction of knowledge element logical relation. First, based on the domain literature, the knowledge element collection is constructed through knowledge element extraction. Second, based on the domain knowledge characteristics, a knowledge element attribute description framework is constructed to provide an all-round and fine-grained unified description of knowledge elements, and the knowledge element attribute collection is constructed based on knowledge element attribute extraction. Finally, the logical relation types are defined in accordance with the actual needs. Through logical relation instance analysis and attribute comparative relation analysis, the logical relation rule base is constructed via characterization and summarization. This is done by taking the basic relations, such as co-occurrence, inclusion, and correlation of attribute values, as clues, and the logical relation extraction is realized through rule matching. Considering the South China Sea rights protection evidence knowledge element, some evidence from different text sources are selected, and the types of logical relations between evidence and their extraction rules are defined. Based on the extraction of knowledge elements and their attributes, the logical relation extraction between the South China Sea rights protection evidence of juxtaposition, succession, rebuttal, and reinforcement is realized based on rule matching, and the logical relation mapping of the South China Sea rights protection evidence is constructed. The feasibility of the proposed method is empirically verified, which can provide new ideas for research on the logical relation extraction of knowledge elements.
|
Received: 04 August 2023
|
|
|
|
1 Li X Y, Peng S Y, Du J. Towards medical knowmetrics: representing and computing medical knowledge using semantic predications as the knowledge unit and the uncertainty as the knowledge context[J]. Scientometrics, 2021, 126(7): 6225-6251. 2 Hou J H, Wang D Y, Li J. A new method for measuring the originality of academic articles based on knowledge units in semantic networks[J]. Journal of Informetrics, 2022, 16(3): 101306. 3 周京艳, 刘如, 李佳娱, 等. 情报事理图谱的概念界定与价值分析[J]. 情报杂志, 2018, 37(5): 31-36, 42. 4 魏建香, 梁帅, 朱云霞, 等. 事理图谱研究进展[J]. 情报资料工作, 2023, 44(6): 35-43. 5 Guan S P, Cheng X Q, Bai L, et al. What is event knowledge graph: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7569-7589. 6 索传军, 盖双双. 知识元的内涵、结构与描述模型研究[J]. 中国图书馆学报, 2018, 44(4): 54-72. 7 王子龙, 戎军涛. 概念知识元的语义融合生成路径与框架[J]. 信息资源管理学报, 2023, 13(4): 111-121. 8 司徒凌云, 石进, 杨海平, 等. 基于多模态知识图谱的南海疆维权证据链系统构建[J]. 情报杂志, 2021, 40(12): 23-29, 44. 9 司徒凌云, 孙鹤, 石进, 等. 多模态南海疆维权证据本体模型构建研究[J]. 情报杂志, 2024, 43(4): 78-88. 10 张海涛, 栾宇, 周红磊, 等. 总体国家安全观下重大突发事件的智能决策情报体系研究[J]. 情报学报, 2022, 41(11): 1174-1187. 11 程为, 司徒凌云, 郑德俊, 等. 面向南海叙事的事件要素自动抽取方法研究[J]. 情报科学, 2023, 41(3): 155-163. 12 栗峥. 证据链与结构主义[J]. 中国法学, 2017(2): 173-193. 13 刘韵清. 领土主权争端中证据链的价值与应用[J]. 南大法学, 2021(3): 22-40. 14 Sun H Y, Grishman R. Lexicalized dependency paths based supervised learning for relation extraction[J]. Computer Systems Science and Engineering, 2022, 43(3): 861-870. 15 李阳, 张诗莹, 盛东方. 情报与事理图谱的关联逻辑及发展思考[J]. 图书与情报, 2023(2): 120-126. 16 Guo Z J, Zhang Y, Lu W. Attention guided graph convolutional networks for relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 241-251. 17 Wei Z P, Su J L, Wang Y, et al. A novel cascade binary tagging framework for relational triple extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 1476-1488. 18 Sun Q, Xu T C, Zhang K, et al. Dual-channel and hierarchical graph convolutional networks for document-level relation extraction[J]. Expert Systems with Applications, 2022, 205: 117678. 19 Sun Q, Zhang K, Huang K, et al. Document-level relation extraction with two-stage dynamic graph attention networks[J]. Knowledge-Based Systems, 2023, 267: 110428. 20 Zhang L, Su J S, Min Z J, et al. Exploring self-distillation based relational reasoning training for document-level relation extraction[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 13967-13975. 21 刘忠宝, 党建飞, 张志剑. 《史记》历史事件自动抽取与事理图谱构建研究[J]. 图书情报工作, 2020, 64(11): 116-124. 22 刘雅姝, 栾宇, 周红磊, 等. 基于事理图谱的重大突发事件动态演变研究[J]. 图书情报工作, 2022, 66(10): 143-151. 23 Zhao S D, Wang Q, Massung S, et al. Constructing and embedding abstract event causality networks from text snippets[C]// Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2017: 335-344. 24 Cao Y N, Cao C G, Zhang J Z, et al. Two-phased event causality acquisition: coupling the boundary identification and argument identification approaches[C]// Proceedings of the 8th International Conference on Knowledge Science, Engineering and Management. Cham: Springer, 2015: 588-599. 25 Zhao S D, Liu T, Zhao S C, et al. Event causality extraction based on connectives analysis[J]. Neurocomputing, 2016, 173(Part 3): 1943-1950. 26 Kadowaki K, Iida R, Torisawa K, et al. Event causality recognition exploiting multiple annotators’ judgments and background knowledge[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2019: 5816-5822. 27 郑巧夺, 吴贞东, 邹俊颖. 基于双层CNN-BiGRU-CRF的事件因果关系抽取[J]. 计算机工程, 2021, 47(5): 58-64, 72. 28 Kruengkrai C, Torisawa K, Hashimoto C, et al. Improving event causality recognition with multiple background knowledge sources using multi-column convolutional neural networks[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3466-3473. 29 Fischbach J, Frattini J, Spaans A, et al. Automatic detection of causality in requirement artifacts: the CiRA approach[C]// Proceedings of the 27th International Working Conference on Requirements Engineering: Foundation for Software Quality. Cham: Springer, 2021: 19-36. 30 周林兴, 王帅. 事理图谱模型下的重大突发事件网 络舆情诱发与缓释机理研究[J]. 图书情报工作, 2023, 67(12): 58-69. 31 张诗莹, 李阳. 融合事理知识图谱与网络舆情分析的突发事件情报支持路径及实证研究——以危化品事故为例[J]. 信息资源管理学报, 2023, 13(4): 60-71. 32 韩振华. 我国南海诸岛史料汇编[M]. 北京: 东方出版社, 1988. 33 吴士存. 民国时期的南海诸岛问题[J]. 民国档案, 1996(3): 127-132. 34 李金明. 中国南海疆域研究的问题与前瞻[J]. 南洋问题研究, 2001(3): 86-95. 35 张卫彬. 中国拥有南沙群岛主权证据链的构造[J]. 社会科学, 2019(9): 85-96. 36 许盘清, 沈固朝. 菲律宾地图展览中的“北岛”地理位置与地名沿革考[J]. 亚太安全与海洋研究, 2016(4): 102-112, 126. 37 彭玉芳, 石进, 徐浩, 等. 基于BERT和分面分类的多标签的南海证据性数据分类研究[J]. 图书馆杂志, 2022, 41(5): 102-108. 38 彭玉芳, 陈将浩, 何志强. 基于机器学习和深度学习的南海证据性数据抽取算法比较与应用[J]. 现代情报, 2022, 42(2): 55-69. 39 孙浩洋, 沈固朝. 民国南海文献知识元内容抽取规则研究[J]. 情报杂志, 2022, 41(12): 132-139. 40 Smiraglia R P. Domain analysis of domain analysis for knowledge organization: observations on an emergent methodological cluster[J]. Knowledge Organization, 2015, 42(8): 602-611. 41 马海云, 薛翔. 面向知识服务的领域知识结构研究[J]. 情报学报, 2022, 41(1): 73-82. 42 杨海平, 齐小英, 符鹏, 等. 南海维权信息资源管理知识体系建构路径[J]. 图书情报工作, 2023, 67(14): 85-93. 43 张保生. 事实、证据与事实认定[J]. 中国社会科学, 2017(8): 110-130, 206. 44 程为, 郑轩昂, 郑德俊, 等. 面向学术全文本的南海维权证据知识元自动识别研究[J]. 情报杂志, 2023, 42(9): 141-148. 45 王忠义, 郑鑫, 王珂莹. 面向用户生成内容的多粒度知识组织研究[J]. 情报学报, 2022, 41(10): 1034-1043. 46 Wang X G, Song N Y, Zhou H M, et al. The representation of argumentation in scientific papers: a comparative analysis of two research areas[J]. Journal of the Association for Information Science and Technology, 2022, 73(6): 863-878. 47 秦东. 南海维权历史文献的关联数据研究[D]. 南京: 南京大学, 2016. 48 王燕红, 司徒凌云, 杨海平, 等. 基于知识图谱的书证目录知识发现研究——以南海书证目录为例[J]. 情报杂志, 2022, 41(3): 173-180. 49 王燕红, 司徒凌云, 杨海平, 等. 基于证明力的细粒度南海疆维权证据关联初探[J]. 图书情报工作, 2022, 66(18): 95-104. 50 Halliday M A K, Matthiessen C M I M. An introduction to functional grammar[M]. 3rd ed. London: Routledge, 2004. 51 Halliday M A K, Matthiessen C M I M. Halliday’s introduction to functional grammar[M]. 4th ed. London: Routledge, 2013. |
|
|
|