|
|
Identifying Moderation Effects via Meta-Analysis of Big Data: Basic Model and Empirical Testing |
Lin Weijie1, Zhou Wenjie2,3,5, Wei Zhipeng4,5, Yang Kehu4,5 |
1.School of Economics and Management, Beijing Jiaotong University, Beijing 100044 2.School of Information Resource Management, Renmin University of China, Beijing 100080 3.Business School of Northwest Normal University, Lanzhou 730070 4.Evidence-Based Medical Center of School of Basic Medical Sciences of Lanzhou University, Lanzhou 730030 5.Cross-Innovation Laboratory of Evidence-Based Social Science of Lanzhou University, Lanzhou 730030 |
|
|
Abstract Moderation effect testing, as an important method for identifying causal relationships in empirical research, helps uncover underlying relationships between independent and dependent variables. However, this method suffers from issues such as the inability to obtain true effect values and low external validity. Owing to the limitations imposed by the inherent flaws of primary studies, the evidence-based field urgently needs new models for identifying moderation effects. In this study, we adopt the concept of big data evidence and use a recursive method to systematically arrange and combine control variables, thereby simulating the “exhaustion” of all possible original research designs. We conduct regression analyses and record all effect values for all possible variable relationships, and then use meta-analysis to comprehensively merge all original effect sizes to obtain true effect values and enhance the external validity of moderation effect results. Finally, taking research on information poverty as an example, this study demonstrates in detail the entire process of identifying moderation effects from a big data evidence perspective. The main contribution of this paper is the enhancement of the meta-analysis framework within the realm of big data evidence-based approach. This involves distilling authentic effect sizes from an extensive compilation of original research findings, thereby augmenting the external validity of moderating effects and enhancing the dependability of causal inference.
|
Received: 29 July 2023
|
|
|
|
1 周文杰, 赵悦言, 魏志鹏, 等. 基于文献证据检索的循证研究效度检验机理探析[J]. 图书馆建设, 2023(1): 25-33, 43. 2 杨克虎. 循证社会科学的产生、发展与未来[J]. 图书与情报, 2018(3): 1-10. 3 Hull C L. Aptitude testing[M]. Yonkers-on-Hudson: World Book Company, 1928. 4 Ghiselli E E. The validity of occupational aptitude tests[M]. New York: Wiley, 1966. 5 Findley M J, Cooper H M. Locus of control and academic achievement: a literature review[J]. Journal of Personality and Social Psychology, 1983, 44(2): 419-427. 6 Baron R M, Kenny D A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations[J]. Journal of Personality and Social Psychology, 1986, 51(6): 1173-1182. 7 Aiken L S, West S G, Reno R R. Multiple regression: testing and interpreting interactions[M]. Newbury Park: Sage Publications, 1991. 8 Zedeck S. Problems with the use of “moderator” variables[J]. Psychological Bulletin, 1971, 76(4): 295-310. 9 McClelland G H, Judd C M. Statistical difficulties of detecting interactions and moderator effects[J]. Psychological Bulletin, 1993, 114(2): 376-390. 10 方杰, 温忠麟, 欧阳劲樱, 等. 国内调节效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1703-1714. 11 Cohen J, Cohen P, West S G, et al. Applied multiple regression/correlation analysis for the behavioral sciences[M]. 3rd ed. Hillsdale: Erlbaum, 2003. 12 Zellner A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias[J]. Journal of the American Statistical Association, 1962, 57(298): 348-368. 13 Asante-Appiah B, Lambert T A. The role of the external auditor in managing environmental, social, and governance (ESG) reputation risk[J]. Review of Accounting Studies, 2023, 28(4): 2589-2641. 14 江艇. 因果推断经验研究中的中介效应与调节效应[J]. 中国工业经济, 2022, 39(5): 100-120. 15 Saunders D R. The “moderator variable” as a useful tool in prediction[C]// Proceedings of the ETS Invitational Conference on Testing Problems. Princeton: Educational Testing Service, 1954: 54-58. 16 Saunders D R. Moderator variables in prediction[J]. Educational and Psychological Measurement, 1956, 16(2): 209-222. 17 Evans M G. A Monte Carlo study of the effects of correlated method variance in moderated multiple regression analysis[J]. Organizational Behavior and Human Decision Processes, 1985, 36(3): 305-323. 18 Champoux J E, Peters W S. Form, effect size and power in moderated regression analysis[J]. Journal of Occupational Psychology, 1987, 60(3): 243-255. 19 Chaplin W F. The next generation of moderator research in personality psychology[J]. Journal of Personality, 1991, 59(2): 143-178. 20 钱锡红, 杨永福, 徐万里. 企业网络位置、吸收能力与创新绩效——一个交互效应模型[J]. 管理世界, 2010(5): 118-129. 21 胡望斌, 张玉利, 杨俊. 同质性还是异质性: 创业导向对技术创业团队与新企业绩效关系的调节作用研究[J]. 管理世界, 2014(6): 92-109, 187-188. 22 Bauer D J, Curran P J. Probing interactions in fixed and multilevel regression: inferential and graphical techniques[J]. Multivariate Behavioral Research, 2005, 40(3): 373-400. 23 王艳, 何竺虔, 汪寿阳. 民营企业并购的协同效应可以实现吗?[J]. 会计研究, 2020(7): 64-77. 24 李倩倩, 宋文静. 保持一致还是维持平衡——抑制放纵消费对后续放纵倾向的影响研究[J]. 南开管理评论, 2022, 25(6): 128-138, 中插23-中插24. 25 温忠麟, 侯杰泰, 马什赫伯特. 潜变量交互效应分析方法[J]. 心理科学进展, 2003, 11(5): 593-599. 26 温忠麟, 侯杰泰, 张雷. 调节效应与中介效应的比较和应用[J]. 心理学报, 2005, 37(2): 268-274. 27 方杰, 温忠麟, 梁东梅, 等. 基于多元回归的调节效应分析[J]. 心理科学, 2015, 38(3): 715-720. 28 卫旭华. 组织与管理研究中的元分析方法[M]. 北京: 科学出版社, 2021: 121. 29 周文杰, 林伟杰, 魏志鹏, 等. 循证视角下的偏倚识别: 基于Egger拓展模型的大数据元分析[J]. 情报学报, 2024, 43(4): 491-502. 30 于良芝. “个人信息世界”——一个信息不平等概念的发现及阐释[J]. 中国图书馆学报, 2013, 39(1): 4-12. 31 周文杰. 基于个人信息世界的信息分化研究[D]. 天津: 南开大学, 2013. 32 Stanley T D, Doucouliagos H. Meta-regression analysis in economics and business[M]. New York: Routledge, 2012: 86-92. |
|
|
|