|
|
Research on Interdisciplinary Paper Recommendation Based on Academic Network |
Du Jin, Xiong Huixiang, Xiang Yinghong |
School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract To meet the needs of information science researchers for interdisciplinary papers, this study develops an interdisciplinary paper recommendation model based on academic network. First, according to the keyword coupling network and author citation network characteristics, the correlation between the author and the paper is extracted, facilitating paper recommendation based on keyword coupling. Second, this model utilizes the author citation coupling network, encompassing cross-disciplinary citation relationships, co-citation relationships, and the subject attribute of the paper. This information is used to mine interdisciplinarity aspects of authors and papers, calculating interdisciplinary similarity for subject-based recommendations. Finally, the study integrates recommendations based on keyword coupling and subject similarity to achieve a hybrid recommendation for interdisciplinary papers. The model is validated using data from Chinese Social Sciences Citation Index (CSSCI) database. Empirical results demonstrate that the recommended papers exhibit interdisciplinary characteristics. Compared with keyword coupling-based recommendations, combining interdisciplinary characteristics improves author recommendation success rates, average accuracy rates, and average recall rates.
|
Received: 22 May 2023
|
|
|
|
1 杜瑾. 基于学术网络的跨学科论文推荐研究[D]. 武汉: 华中师范大学, 2022. 2 Pan L L, Dai X Y, Huang S J, et al. Academic paper recommendation based on heterogeneous graph[C]// Proceedings of 14th China National Conference on Chinese Computational Linguistics. Cham: Springer, 2015: 381-392. 3 熊回香, 李跃艳. 基于word2vec的学者推荐与跨语言论文推荐模型研究[J]. 情报科学, 2019, 37(12): 19-26. 4 王勤洁, 秦春秀, 马续补, 等. 基于作者偏好和异构信息网络的科技文献推荐方法研究[J]. 数据分析与知识发现, 2021, 5(8): 54-64. 5 Sugiyama K, Kan M Y. Scholarly paper recommendation via user’s recent research interests[C]// Proceedings of the 10th Annual Joint Conference on Digital Libraries. New York: ACM Press, 2010: 29-38. 6 谭红叶, 要一璐, 梁颖红. 基于知识脉络的科技论文推荐[J]. 山东大学学报(理学版), 2016, 51(5): 94-101. 7 汤志康, 李春英, 汤庸, 等. 学术社交平台论文推荐方法[J]. 计算机与数字工程, 2017, 45(2): 221-225. 8 Sun J S, Ma J, Liu Z Y, et al. Leveraging content and connections for scientific article recommendation in social computing contexts[J]. The Computer Journal, 2014, 57(9): 1331-1342. 9 张玉连, 袁伟. 隐语义模型下的科技论文推荐[J]. 计算机应用与软件, 2015, 32(2): 37-40. 10 Rafols I, Meyer M. Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 11 陈赛君, 陈智高. 领域交叉性分析指标与方法新探及其实证研究[J]. 情报学报, 2013, 32(11): 1184-1195. 12 Morillo F, Bordons M, Gómez I. Interdisciplinarity in science: a tentative typology of disciplines and research areas[J]. Journal of the American Society for Information Science and Technology, 2003, 54(13): 1237-1249. 13 吴小兰, 章成志. 社交媒体视角下图书情报领域的跨学科性研究[J]. 图书情报工作, 2019, 63(13): 66-74. 14 Cronin B, Meho L I. The shifting balance of intellectual trade in information studies[J]. Journal of the American Society for Information Science and Technology, 2008, 59(4): 551-564. 15 刘婷, 李长玲, 刘运梅, 等. 基于参考文献分类号的图书情报学跨学科知识输入特点分析[J]. 情报科学, 2018, 36(10): 99-104. 16 吴小兰, 章成志. 融合内容与关系的学术社交媒体上跨学科用户推荐模型研究[J]. 图书情报工作, 2020, 64(9): 95-103. 17 李长玲, 冯志刚, 刘运梅, 等. 基于引文网络的潜在跨学科合作者识别——以图书情报学为例[J]. 情报资料工作, 2018(3): 93-98. 18 冯志刚, 张志强. 潜在跨学科合作行为影响因素分析[J]. 情报理论与实践, 2020, 43(2): 114-120, 149. 19 罗式胜. 科学文献关键词链的概念——一种统计分析方法[J]. 情报学报, 1994, 13(2): 126-131. 20 冯小东, 武森, 王佳晔. 基于作者引用文献关系的潜在研究兴趣主题发现[J]. 中国科技论文, 2014, 9(1): 65-70. 21 韩青, 周晓英. 基于文献共被引特征的文献相似度计算优化研究[J]. 情报学报, 2018, 37(9): 905-911. 22 朱祥, 张云秋, 惠秋悦. 基于学科异构知识网络的学术文献推荐方法研究[J]. 图书馆杂志, 2020, 39(8): 103-110. 23 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2016: 855-864. |
|
|
|