|
|
Urban Collaborative Innovation Network and Its Influencing Factors of the AI Field in the Yangtze River Delta Region |
Wang Yuefen1,2, Zhou Hongyu2, Cen Yonghua1 |
1.Institute for Big Data Science, Tianjin Normal University, Tianjin 300074 2.School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 |
|
|
Abstract This study explores the mechanism and influencing factors of urban collaborative innovation, and promotes the development of science & technology innovation between regions and multiple subjects. It collects patent data in artificial intelligence (AI) in the Yangtze River Delta region from 2016 to 2021, combining cities and patented technology knowledge to build a collaborative innovation network based on 27 cities. It analyzes the network's centrality, cohesive subgroup, and structural hole using social network analysis. Additionally, exponential random graph models (ERGM) is used to analyze the influencing factors of urban collaborative innovation by combining the historical statistical indicators, city level, subordinate province, and historical experience network. We find that the urban collaborative innovation network in AI in the Yangtze River Delta region has increased in scale and stability over time, and has become balanced. Regarding the influencing factors of the network, the nodes' main effect plays an obvious role in promoting development and education expenditure at the industrialization level. Moreover, a homogeneous tie that affects the subordinate province and administrative level has different effects on network development. Additionally, the network has a relatively obvious path-dependence trend, and the actual network of the preceding year has an important impact on the network formation in the following year.
|
Received: 12 August 2023
|
|
|
|
1 加快构建新发展格局 着力推动高质量发展[EB/OL]. (2022-10-19) [2023-05-06]. https://www.gov.cn/xinwen/2022-10/19/content_5719442.htm. 2 任晓刚. 以科技创新支撑高质量发展[EB/OL]. (2022-08-24) [2023-05-06]. https://m.gmw.cn/baijia/2022-08/24/35973266.html. 3 李飞, 陈岩, 王海智. 海外资源整合、全球网络嵌入路径与知识溢出[J]. 科学学研究, 2019, 37(4): 679-688. 4 马海涛. 基于知识流动的中国城市网络研究进展与展望[J]. 经济地理, 2016, 36(11): 207-213, 223. 5 Ji L Y, Zhang J N, Pi Y C, et al. Research on the benefit-sharing model of collaborative innovation mechanism in power innovation park[J]. Mathematical Problems in Engineering, 2021, 2021: 6683848. 6 Aalbers R H L, Whelan E. Implementing digitally enabled collaborative innovation: a case study of online and offline interaction in the German automotive industry[J]. Creativity and Innovation Management, 2021, 30(2): 368-383. 7 Hurmelinna-Laukkanen P. Enabling collaborative innovation-knowledge protection for knowledge sharing[J]. European Journal of Innovation Management, 2011, 14(3): 303-321. 8 Zhao J Y, Wu G D, Xi X, et al. How collaborative innovation system in a knowledge-intensive competitive alliance evolves? An empirical study on China, Korea and Germany[J]. Technological Forecasting and Social Change, 2018, 137: 128-146. 9 De Falco S E, Renzi A, Orlando B, et al. Open collaborative innovation and digital platforms[J]. Production Planning & Control, 2017, 28(16): 1344-1353. 10 毛磊, 谢富纪, 凌峰. 多维邻近视角下跨区域协同创新影响因素实证研究[J]. 科技进步与对策, 2017, 34(8): 37-44. 11 Li T C, Zhou X Y. Research on the mechanism of government-industry-university-institute collaborative innovation in green technology based on game-based cellular automata[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 3046. 12 朱妍. 中心地理论[M/OL]// 中国大百科全书(第三版网络版). 北京: 中国大百科全书出版社, 2021. (2022-01-20) [2023-05-20]. https://www.zgbk.com/ecph/words?SiteID=1&ID=181929&Type=bkzyb&SubID=137949. 13 崔永华, 王冬杰. 区域民生科技创新系统的构建——基于协同创新网络的视角[J]. 科学学与科学技术管理, 2011, 32(7): 86-92. 14 王志宝, 孙铁山, 李国平. 区域协同创新研究进展与展望[J]. 软科学, 2013, 27(1): 1-4, 9. 15 李振华, 闫娜娜, 谭庆美. 多中心治理区域科技孵化网络多主体协同创新研究[J]. 中国科技论坛, 2016(7): 92-98. 16 De Noni I, Orsi L, Belussi F. The role of collaborative networks in supporting the innovation performances of lagging-behind European regions[J]. Research Policy, 2018, 47(1): 1-13. 17 Capone F, Lazzeretti L, Innocenti N. Innovation and diversity: the role of knowledge networks in the inventive capacity of cities[J]. Small Business Economics, 2021, 56(2): 773-788. 18 王海花, 孙芹, 杜梅, 等. 长三角城市群协同创新网络演化及形成机制研究——依存型多层网络视角[J]. 科技进步与对策, 2020, 37(9): 69-78. 19 姚志臻, 黄晓明, 张斌, 等. 学科视域下城市创新合作网络的结构与演化——以粤港澳大湾区为例[J]. 情报科学, 2022, 40(8): 167-176, 184. 20 郭建杰, 谢富纪. 基于ERGM的协同创新网络形成影响因素实证研究[J]. 管理学报, 2021, 18(1): 91-98. 21 潘苏, 种照辉, 覃成林. 基于先进生产性服务业的粤港澳大湾区城市网络演化及其影响因素[J]. 广东财经大学学报, 2019, 34(1): 103-112. 22 苏佳璐, 李明星, 马泽君, 等. 基于TERGM的跨区域技术协同创新网络演化动力研究[J]. 系统管理学报, 2023, 32(6): 1255-1268. 23 尹贻梅, 刘志高, 刘卫东. 路径依赖理论及其地方经济发展隐喻[J]. 地理研究, 2012, 31(5): 782-791. 24 Moreno J L, Jennings H H. Sociometric measurement of social configurations: based on deviation from chance[M]. New York: Beacon House, 1945. 25 Holland P W, Leinhardt S. An exponential family of probability distributions for directed graphs[J]. Journal of the American Statistical Association, 1981, 76(373): 33-50. 26 何喜军, 董艳波, 武玉英, 等. 基于ERGM的科技主体间专利技术交易机会实证研究[J]. 中国软科学, 2018(3): 184-192. 27 孙宇, 彭树远. 长三角城市创新网络凝聚子群发育机制研究——基于多值ERGM[J]. 经济地理, 2021, 41(9): 22-30. 28 曾闻, 王曰芬, 周玜宇. 产业领域专利申请状态分布与演化研究——以人工智能领域为例[J]. 情报科学, 2020, 38(12): 4-11. 29 巴志超. 城市尺度下知识网络的空间结构及演变[D]. 武汉: 武汉大学, 2019. 30 赵康杰, 吴亚君, 刘星晨. 中国创新合作网络的演进特征及影响因素研究——以SCI论文合作为例[J]. 科研管理, 2022, 43(7): 96-105. |
|
|
|