|
|
Integrating Multi-source Heterogeneous Online Reviews to Predict the Adoption of Ideas in Open Innovation Communities |
Liu Jiayu, Li He, Shen Wang, Zhu Linlin, Li Shiyu |
School of Business and Management, Jilin University, Changchun 130012 |
|
|
Abstract Integrating internal and external innovation resources to gain market advantages has always been a concern of enterprises, because their innovation ability directly impacts their success or failure. In previous research, online reviews were used as a data source for predicting the adoption of ideas in open innovation communities, and such research mainly relied on a single text feature. Based on heuristic systematic persuasion theory, we propose a new predictive model for idea adoption in open innovation communities. Based on value co-creation theory and trust transfer theory, our model summarizes the definition of multi-source heterogeneous online reviews and describes creativity based on features at three levels: heuristic reviewer features, heuristic review features, and systematic review features. In addition, we introduce a graph attention network to realize the integration of the three levels of idea features. We then collected data sets from a real open innovation community, with which we verified the proposed model and its various characteristics. The comprehensive performance of the model in accurately predicting the adoption of ideas is about 97%. The results also show that the classification prediction results of the graph model with feature fusion are better than the traditional machine learning classification algorithm. These findings not only demonstrate the effectiveness of the graph model in feature fusion, but the integration of the features of reviews and reviewers also makes a methodological and theoretical contribution to the study of idea adoption.
|
Received: 03 April 2023
|
|
|
|
1 曲青山. 深刻理解中国式现代化的科学内涵[OL]. (2022-11-04) [2024-01-08].http://theory.people.com.cn/n1/2022/1104/c40531-32558718.html. 2 张海涛, 刘伟利, 任亮, 等. 开放式创新社区的用户知识协同交互机理及其可视化研究[J]. 情报学报, 2021, 40(5): 523-533. 3 Chesbrough H W. Open innovation: the new imperative for creating and profiting from technology[M]. Boston: Harvard Business Review Press, 2006. 4 吉海颖, 戚桂杰, 李娜. 开放式创新平台用户交互对隐性社区的影响研究[J]. 图书情报工作, 2022, 66(5): 105-115. 5 王婷婷, 王凯平, 戚桂杰. 基于情感分析的开放式创新平台创意采纳研究: 以Salesforce为例[J]. 数据分析与知识发现, 2018, 2(4): 38-47. 6 Di Gangi P M, Wasko M, Hooker R E. Getting customers’ ideas to work for you: learning from Dell how to succeed with online user innovation communities[J]. MIS Quarterly Executive, 2010, 9(4): 213-228. 7 秦敏, 许安琪. 在线用户创新社区创意采纳机理研究——基于整合理论视角[J]. 信息系统学报, 2022(1): 47-61. 8 化柏林, 李广建. 大数据环境下多源信息融合的理论与应用探讨[J]. 图书情报工作, 2015, 59(16): 5-10. 9 Liu P, Wang L Y, Ding X H. Modeling product feature usability through web mining[C]// Proceedings of the 2nd International Conference on E-business and Information System Security. Piscataway: IEEE, 2010: 1-4. 10 Pirkkalainen H, Pawlowski J M, Bick M, et al. Engaging in knowledge exchange: the instrumental psychological ownership in open innovation communities[J]. International Journal of Information Management, 2018, 38(1): 277-287. 11 Stanko M A. Toward a theory of remixing in online innovation communities[J]. Information Systems Research, 2016, 27(4): 773-791. 12 黄璐. 开放式创新社区创意采纳预测的研究——基于Salesforce社区[D]. 广州: 华南理工大学, 2020. 13 Martinez-Torres R, Olmedilla M. Identification of innovation solvers in open innovation communities using swarm intelligence[J]. Technological Forecasting and Social Change, 2016, 109: 15-24. 14 王婷婷. 创新价值链视角下企业开放式创新平台创意管理研究[D]. 济南: 山东大学, 2018. 15 Lee H J, Suh Y. Who creates value in a user innovation community? A case study of MyStarbucksIdea.com[J]. Online Information Review, 2016, 40(2): 170-186. 16 谢海华, 陈雪飞, 都仪敏, 等. 结合统计特征和图模型的半监督式中文关键短语抽取方法[J]. 中文信息学报, 2022, 36(4): 57-65. 17 Hu G N, Dai X Y, Song Y Y, et al. A synthetic approach for recommendation: combining ratings, social relations, and reviews[C]// Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 175-181. 18 Yang X, Yang G F, Wu J N. Integrating rich and heterogeneous information to design a ranking system for multiple products[J]. Decision Support Systems, 2016, 84: 117-133. 19 Guo C H, Du Z L, Kou X Y. Mining online customer reviews for products aspect-based ranking[C]// Proceedings of the International Symposium on Knowledge and Systems Sciences. Singapore: Springer, 2017: 150-161. 20 贺雅琪. 多源异构数据融合关键技术研究及其应用[D]. 成都: 电子科技大学, 2018. 21 Khaleghi B, Khamis A, Karray F O, et al. Multisensor data fusion: a review of the state-of-the-art[J]. Information Fusion, 2013, 14(1): 28-44. 22 刘嘉璐, 袁勤俭. 信任转移理论及其在信息系统研究领域的应用与展望[J]. 现代情报, 2022, 42(5): 160-169. 23 Stewart K J. Transference as a means of building trust in World Wide Web sites[C]// Proceedings of the 20th International Conference on Information Systems. Atlanta: Association for Information Systems, 1999: 459-464. 24 Verhagen T, van Dolen W. Online purchase intentions: a multi-channel store image perspective[J]. Information & Management, 2009, 46(2): 77-82. 25 Ma D D, Li S Q, Du J T, et al. Engaging voluntary contributions in online review platforms: the effects of a hierarchical badges system[J]. Computers in Human Behavior, 2022, 127: 107042. 26 Leong L Y, Hew T S, Ooi K B, et al. Understanding trust in ms-commerce: the roles of reported experience, linguistic style, profile photo, emotional, and cognitive trust[J]. Information & Management, 2021, 58(2): 103416. 27 Rihova I, Buhalis D, Moital M, et al. Social layers of customer-to-customer value co-creation[J]. Journal of Service Management, 2013, 24(5): 553-566. 28 张宁, 赵文斐, 庞智亮, 等. 企业开放式创新社区创意采纳影响因素研究——价值共创视角[J]. 科技进步与对策, 2021, 38(16): 91-100. 29 Ham J, Lee K, Kim T, et al. Subjective perception patterns of online reviews: a comparison of utilitarian and hedonic values[J]. Information Processing & Management, 2019, 56(4): 1439-1456. 30 蒋翠清, 宋凯伦, 丁勇, 等. 基于用户生成内容的潜在客户识别方法[J]. 数据分析与知识发现, 2018, 2(3): 1-8. 31 丁子轩, 俞雷, 张娟, 等. 基于深度残差自适应注意力网络的图像超分辨率重建[J]. 计算机工程, 2023, 49(5): 231-238. 32 Huang Z G. DHSEGATs: distance and hop-wise structures encoding enhanced graph attention networks[J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 350-359. 33 Veli?kovi? P, Cucurull G, Casanova A, et al. Graph attention networks[C/OL]// Proceedings of the 6th International Conference on Learning Representations. Appleton: ICLR, 2018-02-16. https://openreview.net/pdf?id=rJXMpikCZ. 34 Wang J J, Xie H R, Wang F L, et al. Jointly modeling intra- and inter-session dependencies with graph neural networks for session-based recommendations[J]. Information Processing & Management, 2023, 60(2): 103209. 35 杨世刚, 刘勇国. 融合语料库特征与图注意力网络的短文本分类方法[J]. 计算机应用, 2022, 42(5): 1324-1329. 36 Zhao Y H, Da J W, Yan J Q. Detecting health misinformation in online health communities: incorporating behavioral features into machine learning based approaches[J]. Information Processing & Management, 2021, 58(1): 102390. 37 卢小宾, 张杨燚, 杨冠灿, 等. 新兴技术识别中的不均衡分类研究——基于代价敏感的随机森林算法[J]. 情报学报, 2022, 41(10): 1059-1070. 38 Daradkeh M. The relationship between persuasion cues and idea adoption in virtual crowdsourcing communities: evidence from a business analytics community[J]. International Journal of Knowledge Management, 2022, 18(1). DOI: 10.4018/IJKM.291708. 39 白彦壮, 郭蕾, 殷红春. 企业家精神驱动下自主知识产权品牌成长机制研究——以小米科技为例[J]. 科技进步与对策, 2015, 32(12): 79-85. |
|
|
|