|
|
Quantitative Analysis of Data Governance Policies in China: Policy Evolution Path, Policy Subject, Sources of Policy, and Policy Tools |
Huo Fanfan1, Huo Chaoguang1, Ma Haiqun2 |
1.School of Information Resource Management, Renmin University of China, Beijing 100872 2.School of Information Management, Heilongjiang University, Harbin 150080 |
|
|
Abstract Data governance policy, by establishing the rules and criteria for data governance, is crucial for the development of China’s digital economy, especially regarding data production factors. This article integrates policy external structural elements and policy content elements to propose a policy analysis framework including the evolution path, policy subjects, sources of policy, and policy tools for the analysis of the 1097 central data governance policies. We use key policies and important events to depict the evolution path, analyze the policy subjects involved in policy-making, trace the sources of policy, and characterize the policy tool structure based on the policy coding. We find that some core departments of data governance policy making need to strengthen the awareness of data governance. The construction of National Data Bureau is an urgent necessity and a significant action in top-level design to which all departments should actively respond. Policy-making should ensure that authoritative policies strengthen the long-term effectiveness and impact of policy. Our coding analysis, based on the two dimensions of tool dimension and content dimension, identifies imbalances and deficiencies in the policy tools structure, showing that not only leading and controlling tools but also strong basic support and demonstration promotion measures are needed to ensure the health and vitality of data economic development.
|
Received: 05 October 2022
|
|
|
|
1 Jiang G Y, Cai X S, Feng X D, et al. Effect of data environment and cognitive ability on participants’ attitude towards data governance[J]. Journal of Information Science, 2023, 49(3): 740-761. 2 Gregory K M, Cousijn H, Groth P, et al. Understanding data search as a socio-technical practice[J]. Journal of Information Science, 2020, 46(4): 459-475. 3 霍朝光, 卢小宾, 杨冠灿, 等. 数据驱动的产业技术情报分析方法体系框架构建[J]. 图书情报知识, 2022, 39(1): 73-83. 4 Abraham R, Schneider J, vom Brocke J. Data governance: a conceptual framework, structured review, and research agenda[J]. International Journal of Information Management, 2019, 49: 424-438. 5 陆莉, 邵瑞华. 公共安全数据治理体系: 交叉学科视角下的要素范畴与逻辑框架解析[J]. 情报资料工作, 2022, 43(1): 32-40. 6 Yang C, Huang C. Quantitative mapping of the evolution of AI policy distribution, targets and focuses over three decades in China[J]. Technological Forecasting and Social Change, 2022, 174: 121188. 7 王芳. 图情档学科视角下信息安全与数据治理研究热点与趋势[J]. 情报资料工作, 2022, 43(1): 14-17, 22. 8 黄萃, 任弢, 张剑. 政策文献量化研究: 公共政策研究的新方向[J]. 公共管理学报, 2015, 12(2): 129-137, 158-159. 9 曹玲静, 张志强. 政策信息学的发展与前瞻[J]. 图书情报工作, 2021, 65(21): 38-50. 10 Huang C, Wang S T, Su J, et al. A social network analysis of changes in China’s education policy information transmission system (1978-2013)[J]. Higher Education Policy, 2020, 33(2): 323-345. 11 Yang C, Huang C, Su J. A bibliometrics-based research framework for exploring policy evolution: a case study of China’s information technology policies[J]. Technological Forecasting and Social Change, 2020, 157: 120116. 12 霍朝光, 钱毅, 祁天娇. 基于开放公文的新冠肺炎政策知识图谱构建与分析[J]. 档案学通讯, 2021(2): 53-62. 13 周晓英, 岳丽欣, 裴俊良, 等. 我国突发事件应急信息管理政策内容的变迁及其特征研究——基于2003—2020年413份政策文本的计量分析[J]. 情报资料工作, 2021, 42(3): 33-43. 14 张薷, 周晓英, 裴俊良, 等. 我国突发公共卫生事件应急信息管理政策工具的量化分析[J]. 情报资料工作, 2021, 42(3): 44-51. 15 Huang C, Yang C, Su J. Identifying core policy instruments based on structural holes: a case study of China’s nuclear energy policy[J]. Journal of Informetrics, 2021, 15(2): 101145. 16 Yang C, Huang C. Exploring the diversity and consistency of China’s information technology policy[J/OL]. Journal of Information Science, (2022-10-13). https://doi.org/10.1177/01655515221 128417. 17 刘彬芳, 魏玮, 安小米. 大数据时代政府数据治理的政策分析[J]. 情报杂志, 2019, 38(1): 142-147, 141. 18 Li Q, Lan L, Zeng N Y, et al. A framework for big data governance to advance RHINs: a case study of China[J]. IEEE Access, 2019, 7: 50330-50338. 19 王长征, 彭小兵, 彭洋. 地方政府大数据治理政策的注意力变迁——基于政策文本的扎根理论与社会网络分析[J]. 情报杂志, 2020, 39(12): 111-118. 20 蒋国银, 陈玉凤, 匡亚林. 共享经济平台数据治理: 框架构建、核心要素及优化策略[J]. 情报杂志, 2021, 40(8): 71-80. 21 张涛, 马海群. 我国大数据政策主题分析及发展动向研判[J]. 情报理论与实践, 2022, 45(3): 72-80. 22 Thompson N, Ravindran R, Nicosia S. Government data does not mean data governance: lessons learned from a public sector application audit[J]. Government Information Quarterly, 2015, 32(3): 316-322. 23 陈振明. 政策科学[M]. 北京: 中国人民大学出版社, 1998. 24 洪兴文. 权力主体忠诚于权力客体: 和谐社会的权力伦理基础[J]. 道德与文明, 2008(1): 94-97. 25 范铮. 机关联合行文常见问题探析[J]. 档案管理, 2017(3): 73-75. 26 黄萃, 任弢, 李江, 等. 责任与利益: 基于政策文献量化分析的中国科技创新政策府际合作关系演进研究[J]. 管理世界, 2015(12): 68-81. 27 张艳. 国家经开区与高新区的政策渊源探究及反思[J]. 城市规划学刊, 2011(3): 51-57. 28 王虎华. 国际法渊源的定义[J]. 法学, 2017(1): 3-19. 29 江海. 当前中国外交政策的“渊源”与“参照”[J]. 人民论坛, 2015(17): 177-179. 30 徐键. 论行政协议缔结权的渊源[J]. 广东行政学院学报, 2009, 21(2): 46-49. 31 史际春, 胡丽文. 政策作为法的渊源及其法治价值[J]. 兰州大学学报(社会科学版), 2018, 46(4): 154-161. 32 陈兰杰, 赵元晨. 政策工具视角下我国开放政府数据政策文本分析[J]. 情报资料工作, 2020, 41(6): 46-53. 33 卢小宾, 霍帆帆, 霍朝光. 我国信息公开政策计量分析: 权力主体、法律渊源与政策工具[J]. 情报理论与实践, 2022, 45(1): 46-53. 34 霍朝光, 霍帆帆, 王婉如, 等. 基于WordBERT和BiLSTM的政策工具自动分类方法研究[J]. 图书情报知识, 2023, 40(3): 129-138. 35 汤志伟, 龚泽鹏, 郭雨晖. 基于二维分析框架的中美开放政府数据政策比较研究[J]. 中国行政管理, 2017(7): 41-48. 36 文禹衡, 贺亚峰. 数据产权市场主体的认知调查与矫正[J]. 图书馆论坛, 2022, 42(3): 31-42. 37 何梦婷, 刘先瑞, 冉从敬. “工具-目标-主体”组配视角下的数据产权治理路径[J]. 图书馆论坛, 2022, 42(3): 43-55. 责任编辑 冯家琪) |
|
|
|