|
|
Early Identification of Disruptive Technology Using Weak Signals |
Liu Junwan, Pang Bo, Xu Shuo |
College of Economics and Management, Beijing University of Technology, Beijing 100124 |
|
|
Abstract An efficient set of techniques and ideas for the early identification of disruptive technologies is provided by combining a patent-based weak signal detection model and a disruptive technology potential measuring system. First, the topics of patent contents are extracted using from domain patent information using the latent Dirichlet allocation (LDA) topic model. We then use the weak function to filter the topics to collect the topics containing weak signals. The terms contained in the weak-signal topics are further filtered by a prognosis function to obtain the set of weak-signal terms and their corresponding patent collections to be related to their respective domains. Second, the technology disruptive potential measurement index system is applied to measure the disruptive potential of patents containing weak-signal terms. Finally, we obtain the collection of technologies with disruptive potential, which can serve as a reference for the early identification of disruptive technologies in the target domain. We apply this procedure to patent data in the incoPat patent database in gene editing research during the period 2008-2019 to identify the technologies with disruptive potential in this domain. After comparing the results with the weak-signal results based on a keyword text mining procedure, the above identification process and the results of weak signals are verified using CRISPR/Cas9 technology, demonstrating the feasibility and effectiveness of this method.
|
Received: 19 September 2022
|
|
|
|
1 张欣. 颠覆性技术识别方法述评[J]. 图书情报工作, 2020, 64(17): 145-152. 2 开庆, 窦永香. 颠覆性技术识别研究综述[J]. 情报杂志, 2021, 40(11): 31-38. 3 徐硕, 王聪聪, 安欣. 新兴技术弱信号扫描预判述评[J]. 情报杂志, 2023, 42(3): 117-122. 4 董尹, 刘千里, 宋继伟, 等. 弱信号研究综述: 概念、方法和工具[J]. 情报理论与实践, 2018, 41(10): 147-154. 5 刘千里. 情报学语境下的信号研究综述[J]. 情报杂志, 2011, 30(1): 13-18. 6 刘亚辉, 许海云. 突破性创新早期识别与弱信号分析综述[J]. 图书情报工作, 2021, 65(4): 89-101. 7 Xu S, Wang C C, An X, et al. A novel developmental trajectory discovery approach by integrating main path analysis and intermediacy[J/OL]. Journal of Information Science, (2022-06-29). https://doi.org/10.1177/01655515221101835. 8 党倩娜. 新兴技术弱信号研究的基本进展与问题[J]. 竞争情报, 2018, 14(4): 58-64. 9 Yoon J. Detecting weak signals for long-term business opportunities using text mining of Web news[J]. Expert Systems with Applications, 2012, 39(16): 12543-12550. 10 Pépin L, Kuntz P, Blanchard J, et al. Visual analytics for exploring topic long-term evolution and detecting weak signals in company targeted tweets[J]. Computers & Industrial Engineering, 2017, 112: 450-458. 11 Gutsche T. Automatic weak signal detection and forecasting[D]. Enschede: University of Twente, 2018. 12 石慧, 潘云涛, 苏成. 颠覆性技术及其识别预测方法研究综述[J]. 情报工程, 2019, 5(3): 33-48. 13 邵云飞, 詹坤, 吴言波. 突破性技术创新: 理论综述与研究展望[J]. 技术经济, 2017, 36(4): 30-37. 14 卢超, 侯海燕, DingYing, 等. 国外新兴研究话题发现研究综述[J]. 情报学报, 2019, 38(1): 97-110. 15 邓胜利, 林艳青, 王野. 企业竞争弱信号的特征提取与定量识别研究[J]. 图书情报工作, 2016, 60(10): 67-75. 16 Weissenberger-Eibl M A, Speith S. An integrative approach to disruptive technology forecasting in companies[M]// Management of Technology Innovation and Value Creation: Selected Papers from the 16th International Conference on Management of Technology. Singapore: World Scientific, 2008: 401-414. 17 刘忠宝, 康嘉琦, 张静. 基于主题突变检测的颠覆性技术识别——以无人机技术领域为例[J]. 科技导报, 2020, 38(20): 97-105. 18 王康, 陈悦, 王玉奇, 等. 基于专利引用变化的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(1): 74-80, 169. 19 马荣康, 王艺棠. 基于专利相似度的突破性技术发明识别研究——以纳米技术为例[J]. 科研管理, 2021, 42(5): 153-160. 20 刘玉梅, 温馨, 孟翔飞. 基于技术轨道跃迁的突破性技术预测方法及应用研究[J]. 情报杂志, 2021, 40(11): 39-45, 15. 21 侯广辉, 廖桂铭, 王刚. 基于突变级数的颠覆性技术识别模型构建及实证研究[J]. 情报杂志, 2021, 40(10): 7-14. 22 Chen X L, Han T. Disruptive technology forecasting based on gartner hype cycle[C]// Proceedings of the 2019 IEEE Technology & Engineering Management Conference. Piscataway: IEEE, 2019: 1-6. 23 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 24 关鹏, 王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016(9): 42-50. 25 Lin J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145-151. 26 El Akrouchi M, Benbrahim H, Kassou I. End-to-end LDA-based automatic weak signal detection in Web news[J]. Knowledge-Based Systems, 2021, 212: 106650. 27 王山, 谭宗颖. 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11): 144-153. 28 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. 29 高继平, 丁堃. 专利计量指标研究述评[J]. 图书情报工作, 2011, 55(20): 40-43. 30 张金柱, 张晓林. 基于被引科学知识主题突变的突破性创新识别[J]. 现代图书情报技术, 2016(Z1): 42-50. 31 陈育新, 李健, 韩毅. 核心—边缘理论视角下的颠覆性技术识别研究[J]. 情报理论与实践, 2022, 45(8): 121-129. 32 仲兆满, 管燕, 李存华, 等. 微博网络地域Top-k突发事件检测[J]. 计算机学报, 2018, 41(7): 1504-1516. 33 李永洁, 杨俊涛, 杜建. 医学科技颠覆性技术展望[J]. 中国工程科学, 2018, 20(6): 64-68. 34 Hiltunen E. The future sign and its three dimensions[J]. Futures, 2008, 40(3): 247-260. 35 张强, 顾明亮. 基因编辑技术及其临床应用[J]. 生命的化学, 2022, 42(1): 41-55. 36 谭磊, 陈明月, 沈彬. 基因编辑研究进展与展望[J]. 南京医科大学学报(自然科学版), 2021, 41(11): 1689-1694. |
|
|
|