|
|
A Review of Explainable Information Recommendation |
Li Weiqing1,3, Wang Weijun2, Huang Wei1,3, Tian Meng1, Zhang Rui1 |
1.School of Economics and Management, Hubei University of Technology, Wuhan 430068 2.Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079 3.Hubei Circular Economy Development Research Center, Wuhan 430068 |
|
|
Abstract Explainable information recommendation can effectively improve the reliability of recommendation results and user’s trust and satisfaction, which will be an important direction of future research. Reviewing the situation and progress of research in this area can provide ideas and reference for further investigation, and promote the development of explainable recommender. By searching and investigating the literature related to explainable information recommendation at home and abroad, we deeply analyzed the status and shortcomings of research in three aspects: interpretation mechanism of explainable recommendation model, media and presentation of recommendation interpretation, and recommendation interpretation evaluation. Furthermore, we responded to the “three W (who, what, why) questions” in explainable intelligent recommender system, proposed future research directions and topics of explainable information recommendation.
|
Received: 03 March 2022
|
|
|
|
1 Xie L J, Hu Z M, Cai X J, et al. Explainable recommendation based on knowledge graph and multi-objective optimization[J]. Complex & Intelligent Systems, 2021, 7(3): 1241-1252. 2 Zarzour H, Al shboul B, Al-Ayyoub M, et al. Sentiment analysis based on deep learning methods for explainable recommendations with reviews[C]// Proceedings of the 2021 12th International Conference on Information and Communication Systems. Piscataway: IEEE, 2021: 452-456. 3 张晓娟, 彭琳, 李倩. 查询推荐研究综述[J]. 情报学报, 2019, 38(4): 432-446. 4 Isinkaye F O, Folajimi Y O, Ojokoh B A. Recommendation systems: principles, methods and evaluation[J]. Egyptian Informatics Journal, 2015, 16(3): 261-273. 5 姜婷婷, 许艳闰. 国外过滤气泡研究: 基础、脉络与展望[J]. 情报学报, 2021, 40(10): 1108-1117. 6 Confalonieri R, Coba L, Wagner B, et al. A historical perspective of explainable Artificial Intelligence[J]. WIREs: Data Mining and Knowledge Discovery, 2021, 11(1): e1391. 7 Rai A. Explainable AI: from black box to glass box[J]. Journal of the Academy of Marketing Science, 2020, 48: 137-141. 8 互联网信息服务算法推荐管理规定[EB/OL]. (2022-01-04). http://www.cac.gov.cn/2022-01/04/c_1642894606364259.htm. 9 Chou Y L, Moreira C, Bruza P, et al. Counterfactuals and causability in explainable artificial intelligence: theory, algorithms, and applications[J]. Information Fusion, 2022, 81: 59-83. 10 Balabanovi? M, Shoham Y. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72. 11 Schafer J B, Konstan J, Riedl J. Recommender systems in e-commerce[C]// Proceedings of the 1st ACM Conference on Electronic Commerce. New York: ACM Press, 1999: 158-166. 12 Herlocker J L. Understanding and improving automated collaborative filtering systems[D]. Minneapolis: University of Minnesota, 2000. 13 Herlocker J L, Konstan J A, Riedl J. Explaining collaborative filtering recommendations[C]// Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 2000: 241-250. 14 Sinha R, Swearingen K. The role of transparency in recommender systems[C]// Proceedings of the Extended Abstracts on Human Factors in Computing Systems. New York: ACM Press, 2002: 830-831. 15 Bilgic M, Mooney R J. Explaining recommendations: satisfaction vs. promotion[C]// Proceedings of Beyond Personalization 2005: a Workshop on the Next Stage of Recommender Systems Research at the 2005 International Conference on Intelligent User Interfaces, San Diego, CA, 2005: 153. 16 Tintarev N, Masthoff J. A survey of explanations in recommender systems[C]// Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering Workshop. Piscataway: IEEE, 2007: 801-810. 17 Zhang Y F, Lai G K, Zhang M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]// Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM Press, 2014: 83-92. 18 Lu Y C, Dong R H, Smyth B. Why I like it: multi-task learning for recommendation and explanation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM Press, 2018: 4-12. 19 He X N, Chen T, Kan M Y, et al. TriRank: review-aware explainable recommendation by modeling aspects[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 1661-1670. 20 Zhang J S, Chen X, Zhao W X. Causally attentive collaborative filtering[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2021: 3622-3626. 21 Xu S Y, Li Y Q, Liu S C, et al. Learning causal explanations for recommendation[C]// Proceedings of the 1st International Workshop on Causality in Search and Recommendation, 2021: 13-25. 22 Tan J T, Xu S Y, Ge Y Q, et al. Counterfactual explainable recommendation[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM Press, 2021: 1784-1793. 23 余以胜, 韦锐, 刘鑫艳. 可解释的实时图书信息推荐模型研究[J]. 情报学报, 2019, 38(2): 209-216. 24 高嘉良, 仇培元, 余丽, 等. 基于旅游知识图谱的可解释景点推荐[J]. 中国科学: 信息科学, 2020, 50(7): 1055-1068. 25 李伟卿, 池毛毛, 王伟军. 面向用户长短期偏好调节的可解释个性化推荐方法研究[J]. 图书情报工作, 2021, 65(12): 101-111. 26 李芳, 刘新民, 王松. 个性化推荐的信息呈现、心理距离与消费者接受意愿——基于解释水平理论的视角[J]. 企业经济, 2018, 37(5): 109-115. 27 李治, 孙锐. 推荐解释对改变用户行为意向的研究——基于传播说服理论的视阈[J]. 中国软科学, 2019(6): 176-184. 28 Zhang Y F, Chen X. Explainable recommendation: a survey and new perspectives[J]. Foundations and Trends? in Information Retrieval, 2020, 14(1): 1-101. 29 孙鲁平, 张丽君, 汪平. 网上个性化推荐研究述评与展望[J]. 外国经济与管理, 2016, 38(6): 82-99. 30 Pazzani M J, Billsus D. Content-based recommendation systems[M]// The Adaptive Web. Heidelberg: Springer, 2007: 325-341. 31 王微微, 夏秀峰, 李晓明. 一种基于用户行为反馈的兴趣度模型更新算法[J]. 辽宁大学学报(自然科学版), 2011, 38(1): 40-45. 32 李明, 刘鲁, 王君, 等. 基于模糊文本分类的多知识领域专家推荐方法[J]. 北京航空航天大学学报, 2009, 35(10): 1254-1257. 33 陈明. 基于领域知识的个性化协同商务推荐系统[J]. 计算机工程与应用, 2008, 44(6): 29-32, 61. 34 Hasan M, Ahmed S, Malik M A I, et al. A comprehensive approach towards user-based collaborative filtering recommender system[C]// Proceedings of the 2016 International Workshop on Computational Intelligence. Piscataway: IEEE, 2017: 159-164. 35 Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285-295. 36 Heckel R, Vlachos M, Parnell T, et al. Scalable and interpretable product recommendations via overlapping co-clustering[C]// Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering. Piscataway: IEEE, 2017: 1033-1044. 37 Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases[J]. ACM SIGMOD Record, 1993, 22(2): 207-216. 38 Lin W Y, Alvarez S A, Ruiz C. Efficient adaptive-support association rule mining for recommender systems[J]. Data Mining and Knowledge Discovery, 2002, 6(1): 83-105. 39 Chen X, Qin Z, Zhang Y F, et al. Learning to rank features for recommendation over multiple categories[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2016: 305-314. 40 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 937-956. 41 Park H, Jeon H, Kim J, et al. UniWalk: explainable and accurate recommendation for rating and network data[OL]. (2017-10-18). https://arxiv.org/pdf/1710.07134.pdf. 42 Zhang Y F, Ai Q Y, Chen X, et al. Learning over knowledge-base embeddings for recommendation[OL]. (2018-03-22). https://arxiv.org/pdf/1803.06540.pdf. 43 Ai Q Y, Zhang Y F, Bi K P, et al. Explainable product search with a dynamic relation embedding model[J]. ACM Transactions on Information Systems, 2019, 38(1): Article No.4. 44 Zhang S, Yao L N, Sun A X, et al. Deep learning based recommender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): Article No.5. 45 Bahdanau D, Cho K H, Bengio Y. Neural machine translation by jointly learning to align and translate[OL]. (2016-05-19). https://arxiv.org/pdf/1409.0473.pdf. 46 Seo S, Huang J, Yang H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]// Proceedings of the Eleventh ACM Conference on Recommender Systems. New York: ACM Press, 2017: 297-305. 47 Gao J Y, Wang X T, Wang Y S, et al. Explainable recommendation through attentive multi-view learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3622-3629. 48 Tintarev N, Masthoff J. Explaining recommendations: design and evaluation[M]// Recommender Systems Handbook. Boston: Springer, 2015: 353-382. 49 Vig J, Sen S, Riedl J. Tagsplanations: explaining recommendations using tags[C]// Proceedings of the 14th International Conference on Intelligent User Interfaces. New York: ACM Press, 2009: 47-56. 50 Pazzani M J. A framework for collaborative, content-based and demographic filtering[J]. Artificial Intelligence Review, 1999, 13(5): 393-408. 51 Zhao X W, Guo Y W, He Y L, et al. We know what you want to buy: a demographic-based system for product recommendation on microblogs[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 1935-1944. 52 Sharma A, Cosley D. Do social explanations work? Studying and modeling the effects of social explanations in recommender systems[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM Press, 2013: 1133-1144. 53 Quijano-Sanchez L, Sauer C, Recio-Garcia J A, et al. Make it personal: a social explanation system applied to group recommendations[J]. Expert Systems with Applications, 2017, 76: 36-48. 54 Symeonidis P, Coba L, Zanker M. Counteracting the filter bubble in recommender systems: novelty-aware matrix factorization[J]. Intelligenza Artificiale, 2019, 13(1): 37-47. 55 Berbague C E, Karabadji N E I, Seridi H, et al. An overlapping clustering approach for precision, diversity and novelty-aware recommendations[J]. Expert Systems with Applications, 2021, 177: 114917. 56 Cai X J, Xie L J, Tian R, et al. Explicable recommendation based on knowledge graph[J]. Expert Systems with Applications, 2022, 200: 117035. 57 Chen L, Yan D N, Wang F. User evaluations on sentiment-based recommendation explanations[J]. ACM Transactions on Interactive Intelligent Systems, 2019, 9(4): Article No.20. 58 Hou Y F, Yang N, Wu Y, et al. Explainable recommendation with fusion of aspect information[J]. World Wide Web, 2019, 22(1): 221-240. 59 McAuley J, Leskovec J. Hidden factors and hidden topics: understanding rating dimensions with review text[C]// Proceedings of the 7th ACM Conference on Recommender Systems. New York: ACM Press, 2013: 165-172. 60 Zhang Y F, Zhang H C, Zhang M, et al. Do users rate or review?: boost phrase-level sentiment labeling with review-level sentiment classification[C]// Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM Press, 2014: 1027-1030. 61 Wu Y, Ester M. FLAME: a probabilistic model combining aspect based opinion mining and collaborative filtering[C]// Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2015: 199-208. 62 Qiu L, Gao S, Cheng W L, et al. Aspect-based latent factor model by integrating ratings and reviews for recommender system[J]. Knowledge-Based Systems, 2016, 110: 233-243. 63 Costa F, Ouyang S X, Dolog P, et al. Automatic generation of natural language explanations[C]// Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion. New York: ACM Press, 2018: Article No.57. 64 Peake G, Wang J. Explanation mining: post hoc interpretability of latent factor models for recommendation systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 2060-2069. 65 Abdollahi B, Nasraoui O. Using explainability for constrained matrix factorization[C]// Proceedings of the Eleventh ACM Conference on Recommender Systems. New York: ACM Press, 2017: 79-83. 66 Li L, Zhang Y F, Chen L. EXTRA: explanation ranking datasets for explainable recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2021: 2463-2469. 67 Gedikli F, Jannach D, Ge M Z. How should I explain? A comparison of different explanation types for recommender systems[J]. International Journal of Human-Computer Studies, 2014, 72(4): 367-382. 68 Balog K, Radlinski F, Arakelyan S. Transparent, scrutable and explainable user models for personalized recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2019: 265-274. 69 Shin D. The effects of explainability and causability on perception, trust, and acceptance: implications for explainable AI[J]. International Journal of Human-Computer Studies, 2021, 146: 102551. 70 Chen L, Pu P. Trust building in recommender agents[C]// Web Personalization and Recommender Systems, 2016: 135-145. 71 Thompson C A, G?ker M H, Langley P. A personalized system for conversational recommendations[J]. Journal of Artificial Intelligence Research, 2004, 21(1): 393-428. 72 Felfernig A, Gula B. Consumer behavior in the interaction with knowledge-based recommender applications[C]// Proceedings of the ECAI 2006 Workshop on Recommender Systems. Amsterdam: IOS Press, 2006: 37-41. 73 Wang N, Wang H N, Jia Y L, et al. Explainable recommendation via multi-task learning in opinionated text data[C]// Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM Press, 2018: 165-174. 74 王伟军, 董柔纯, 牛更枫, 等. 网络适应: 概念与模型[J]. 南昌大学学报(人文社会科学版), 2021, 52(2): 45-54. |
|
|
|