|
|
Topic Detection and Evolution in Social Media Platforms Based on a Temporal Co-word Network |
Yang Xinyi1, Wang Wei1, Zhu Hengmin2 |
1.School of Information Management, Nanjing University, Nanjing 210023 2.School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003 |
|
|
Abstract Social media platforms are essential for netizens to express opinions and sentiments. Analyzing topic distribution and their evolution on social media platforms can reveal hot topics and their changes to provide important references for influencing public opinion. This study employs network community evolution discovery to detect topics and analyze their evolution on social media platforms. First, user-generated textual contents are divided into several slices to construct a temporal co-word network, and the backbones of co-word network in each time slice are extracted. Then, network communities are discovered through the Leiden algorithm to represent topics. To detect topic evolution, a method of detecting topic evolution events is proposed on the basis of the forward and backward transfer probabilities and community size. Therefore, events, such as continuing, growing, shrinking, merging, splitting, forming, and dissolving are identified. Considering the microblogs about COVID-19 in Sina Weibo as an example, a larger number of topics, with finer granularity are uncovered in backbones than in the original co-word networks. Topic evolution paths are also found, such as changes in users’ sentiment from negative to positive, professionalization of pandemic prevention and medical work, the global spread of the pandemic, and the growing economic impact of the pandemic.
|
Received: 05 May 2022
|
|
|
|
1 Abulaish M, Fazil M. Modeling topic evolution in Twitter: an embedding-based approach[J]. IEEE Access, 2018, 6: 64847-64857. 2 刘倩, 李晨亮. 基于社交媒体的话题演变研究综述[J]. 数据分析与知识发现, 2020, 4(8): 1-14. 3 刘自强, 许海云, 岳丽欣, 等. 面向研究前沿预测的主题扩散演化滞后效应研究[J]. 情报学报, 2018, 37(10): 979-988. 4 Andrei V, Arandjelovi? O. Complex temporal topic evolution modelling using the Kullback-Leibler divergence and the Bhattacharyya distance[J]. EURASIP Journal on Bioinformatics and Systems Biology, 2016, 2016(1): Article No.16. 5 Jung S, Yoon W C. An alternative topic model based on common interest authors for topic evolution analysis[J]. Journal of Informetrics, 2020, 14(3): 101040. 6 李纲, 陈思菁, 毛进, 等. 自然灾害事件微博热点话题的时空对比分析[J]. 数据分析与知识发现, 2019, 3(11): 1-15. 7 陈翔, 黄璐, 倪兴兴, 等. 基于动态语义网络分析的主题演化路径识别研究[J]. 情报学报, 2021, 40(5): 500-512. 8 Tajeuna E G, Bouguessa M, Wang S R. Tracking the evolution of community structures in time-evolving social networks[C]// Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2015: 1-10. 9 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022. 10 Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008. 11 陈卓群. 基于共词网络的社交媒体话题演化分析[J]. 情报科学, 2015, 33(1): 120-125. 12 王艳东, 李萌萌, 付小康, 等. 基于社交媒体共词网络的灾情发展态势探测方法[J]. 武汉大学学报(信息科学版), 2020, 45(5): 691-698, 735. 13 Zhang Q R, Li Y, Liu J S, et al. A dynamic co-word network-related approach on the evolution of China’s urbanization research[J]. Scientometrics, 2017, 111(3): 1623-1642. 14 Traag V A, Waltman L, van Eck N J. From Louvain to Leiden: guaranteeing well-connected communities[J]. Scientific Reports, 2019, 9(1): Article No.5233. 15 Cruickshank I J, Carley K M. Characterizing communities of hashtag usage on Twitter during the 2020 COVID-19 pandemic by multi-view clustering[J]. Applied Network Science, 2020, 5(1): 66. 16 李乾瑞, 郭俊芳, 黄颖, 等. 基于突变-融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2021, 39(12): 2129-2139. 17 Cortés J D. Identifying the dissension in management and business research in Latin America and the Caribbean via co-word analysis[J]. Scientometrics, 2022, 127(12): 7111-7125. 18 Fudolig M I, Alshaabi T, Arnold M V, et al. Sentiment and structure in word co-occurrence networks on Twitter[J]. Applied Network Science, 2022, 7(1): Article No.9. 19 Salnikov V, Cassese D, Lambiotte R, et al. Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge[J]. Applied Network Science, 2018, 3(1): 37. 20 Arroyo-Machado W, Torres-Salinas D, Robinson-Garcia N. Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics[J]. Scientometrics, 2021, 126(11): 9267-9289. 21 Masucci A P, Kalampokis A, Eguíluz V M, et al. Wikipedia information flow analysis reveals the scale-free architecture of the semantic space[J]. PLoS One, 2011, 6(2): e17333. 22 Serrano M á, Bogu?á M, Vespignani A. Extracting the multiscale backbone of complex weighted networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(16): 6483-6488. 23 Coscia M, Neffke F M H. Network backboning with noisy data[C]// Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering. Piscataway: IEEE, 2017: 425-436. 24 Slater P B. A two-stage algorithm for extracting the multiscale backbone of complex weighted networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26): E66. 25 Grady D, Thiemann C, Brockmann D. Robust classification of salient links in complex networks[J]. Nature Communications, 2012, 3(1): Article No.864. 26 Rossetti G, Cazabet R. Community discovery in dynamic networks: a survey[J]. ACM Computing Surveys, 2018, 51(2): Article No.35. 27 Dakiche N, Benbouzid-Si Tayeb F, Slimani Y, et al. Tracking community evolution in social networks: a survey[J]. Information Processing & Management, 2019, 56(3): 1084-1102. 28 Wang X G, Cheng Q K, Lu W. Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks[J]. Scientometrics, 2014, 101(2): 1253-1271. 29 刘自强, 王效岳, 白如江. 多维度视角下学科主题演化可视化分析方法研究——以我国图书情报领域大数据研究为例[J]. 中国图书馆学报, 2016, 42(6): 67-84. 30 刘自强, 岳丽欣, 许海云, 等. 时序共词网络构建及其动态可视化研究[J]. 情报学报, 2020, 39(2): 186-198. 31 Huang L, Chen X, Zhang Y, et al. Identification of topic evolution: network analytics with piecewise linear representation and word embedding[J]. Scientometrics, 2022, 127(9): 5353-5383. 32 Fienberg S E. An iterative procedure for estimation in contingency tables[J]. The Annals of Mathematical Statistics, 1970, 41(3): 907-917. 33 Bródka P, Saganowski S, Kazienko P. GED: the method for group evolution discovery in social networks[J]. Social Network Analysis and Mining, 2013, 3(1): 1-14. 34 李纲, 陈璟浩. 突发公共事件网络舆情研究综述[J]. 图书情报知识, 2014(2): 111-119. 35 Wang J Z, Zhou Y, Zhang W, et al. Concerns expressed by Chinese social media users during the COVID-19 pandemic: content analysis of Sina Weibo microblogging data[J]. Journal of Medical Internet Research, 2020, 22(11): e22152. 36 王晰巍, 张柳, 文晴, 等. 基于贝叶斯模型的移动环境下网络舆情用户情感演化研究——以新浪微博“里约奥运会中国女排夺冠”话题为例[J]. 情报学报, 2018, 37(12): 1241-1248. 37 安璐, 杜廷尧, 李纲, 等. 突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J]. 情报学报, 2018, 37(4): 394-405. 38 曹树金, 岳文玉. 突发公共卫生事件微博舆情主题挖掘与演化分析[J]. 信息资源管理学报, 2020, 10(6): 28-37. 39 黄仕靖, 吴川徽, 袁勤俭, 等. 基于情感分析的突发公共卫生事件舆情时空演化差异研究[J]. 情报科学, 2022, 40(6): 149-159. 40 Ntompras C, Drosatos G, Kaldoudi E. A high-resolution temporal and geospatial content analysis of Twitter posts related to the COVID-19 pandemic[J]. Journal of Computational Social Science, 2022, 5(1): 687-729. 41 李秋霞. 城市突发公共卫生事件经济影响与应急处置机制研究[D]. 北京: 中国社会科学院研究生院, 2021. |
|
|
|