|
|
Evaluation of Data Papers from the Perspective of Multi-dimensional Influence Fusion |
Xu Xin, Ye Dingling |
Department of Information Management, Faculty of Economics and Management, East China Normal University, Shanghai 200241 |
|
|
Abstract With the influence of data papers, data metrics has gradually risen to prominence. Based on data metrics, this paper integrates multi-dimensionality and multiple indexes to comprehensively evaluate the influence of data papers. First, an analysis of the mechanism of the influence of data papers via information dissemination is conducted. The influence of data papers can be divided into three dimensions: potential influence, academic influence, and social influence. Based on this a comprehensive evaluation system of data paper's influence is constructed by fusing Altmetrics and citation analysis. Finally, the evaluation results of the influence of data papers is deconstructed using correlation analysis and three-dimensional space difference analysis. The results show that three-dimensional influence reflects the comprehensive influence of data papers, and these complement and promote one another. At the same time, data papers should promote the targeted development of review mechanisms, citation mechanisms, and incentive mechanisms as a whole and promote the internal optimization of the quality, content, logic, and timeliness of data papers.
|
Received: 05 January 2021
|
|
|
|
1 《关于构建更加完善的要素市场化配置体制机制的意见》印发——引导要素向先进生产力集聚[EB/OL]. (2020-04-10) [2020-12-10]. http://www.gov.cn/zhengce/2020-04/10/content_5500740.htm. 2 Chavan V, Penev L. The data paper: a mechanism to incentivize data publishing in biodiversity science[J]. BMC Bioinformatics, 2011, 12(Suppl 15): S2. 3 Friedman R, Psaki S, Bingenheimer J B. Announcing a new journal section: data papers[J]. Studies in Family Planning, 2017, 48(3): 291-292. 4 方静怡. 数据引证的中国实践: 现状、障碍与对策研究[D]. 上海: 华东师范大学, 2013. 5 Kratz J E, Strasser C. Making data count[J]. Scientific Data, 2015, 2: 150039. 6 Kratz J E, Strasser C. Researcher perspectives on publication and peer review of data[J]. PLoS One, 2015, 10(2): e0117619. 7 Costas R, Meijer I, Zahedi Z, et al. The value of research data - metrics for datasets from a cultural and technical point of view[R/OL]. (2013-04-01) [2022-01-01]. https://repository.jisc.ac.uk/6205/1/Value_of_Research_Data.pdf. 8 顾立平. 数据级别计量——概念辨析与实践进展[J]. 中国图书馆学报, 2015, 41(2): 56-71. 9 孟阳, 屈宝强. 数据计量与文献计量之间的对比研究[J]. 情报理论与实践, 2017, 40(11): 139-144, 138. 10 叶丁菱. 融合Altmetrics与引文分析的数据论文影响力多维评价研究[D]. 武汉: 华中师范大学, 2020. 11 国务院办公厅关于印发科学数据管理办法的通知[EB/OL]. (2018-04-02) [2020-12-10]. http://www.gov.cn/zhengce/content/2018-04/02/content_5279272.htm. 12 Priem J, Costello K L. How and why scholars cite on Twitter[J]. Proceedings of the American Society for Information Science and Technology, 2010, 47(1): 1-4. 13 刘春丽. 基于PLOS API的论文影响力选择性计量指标研究[J]. 图书情报工作, 2013, 57(7): 89-95. 14 Piwowar H. Value all research products[J]. Nature, 2013, 493(7431): 159. 15 Ingwersen P, Chavan V. Indicators for the Data Usage Index (DUI): an incentive for publishing primary biodiversity data through global information infrastructure[J]. BMC Bioinformatics, 2011, 12(Suppl 15): S3. 16 Ball A, Duke M. How to track the impact of research data with metrics[R/OL]. DCC How-to Guides. Edinburgh: Digital Curation Centre, (2015-06-29). https://www.dcc.ac.uk/guidance/how-guides/track-data-impact-metrics. 17 Fear K. The impact of data reuse: a pilot study of five measures[EB/OL]. [2021-02-09]. https://www.slideshare.net/assist_org/kfear-rdap. 18 Peters I, Kraker P, Lex E, et al. Research data explored: an extended analysis of citations and altmetrics[J]. Scientometrics, 2016, 107(2): 723-744. 19 翟姗姗, 叶丁菱, 胡畔, 等. 融合Altmetrics与引文分析的数据论文学术影响力评价[J]. 情报学报, 2020, 39(7): 710-718. 20 刘闯. 数据影响力积分(DIS)——数据影响力新的计量方法[J]. 全球变化数据学报, 2018, 2(2): 135-143. 21 秦奋, 高健. 基于Scopus数据库的Altmetrics指标与引文计量对比分析[J]. 情报学报, 2019, 38(4): 377-383. 22 张琳, 孙蓓蓓, 王贤文, 等. 交叉科学成果影响力研究: 使用数据与引用数据视角[J]. 情报学报, 2020, 39(5): 469-477. 23 Bj?rk B C. A lifecycle model of the scientific communication process[J]. Learned Publishing, 2005, 18(3): 165-176. 24 王贤文, 张春博, 毛文莉, 等. 科学论文在社交网络中的传播机制研究[J]. 科学学研究, 2013, 31(9): 1287-1295. 25 邱均平, 余厚强. 基于影响力产生模型的替代计量指标分层研究[J]. 情报杂志, 2015, 34(5): 53-58. 26 陈云伟, 张志强. 科技评价走出“破”与“立”困局的思考与建议[J]. 情报学报, 2020, 39(8): 796-805. 27 Zahedi Z, Costas R, Wouters P. Do mendeley readership counts help to filter highly cited WoS publications better than average citation impact of journals (JCS)?[C]// Proceedings of the 15th International Conference of the International Society for Scientimetrics and Informetrics, Bogazici University, Istanbul, Turkey, 2015: 16-25. 28 Earth System Science Data. Aims & scope[EB/OL]. [2020-12-10]. https://www.earth-system-science-data.net/about/aims_and_ scope.html. 29 熊国经, 熊玲玲, 董玉竹, 等. 学术期刊评价指标的权重探讨[J]. 统计与决策, 2018, 34(4): 81-83. 30 孔祥沛, 孙继红. PLS路径模型在省域高校科技活动综合评价中的实证研究[J]. 科技进步与对策, 2010, 27(7): 122-126. 31 王志红, 曹树金. 视频检索相关性判断的影响因素: 基于PLS路径分析的实证研究[J]. 情报学报, 2020, 39(9): 926-937. 32 Fornell C, Johnson M D, Anderson E W, et al. The American customer satisfaction index: nature, purpose, and findings[J]. Journal of Marketing, 1996, 60(4): 7-18. |
|
|
|