|
|
Study on Detection Model and Simulation of Internet Rumor Based on Blockchain |
Wang Xiwei1,2,3, Zhang Liu1, Huang Bo4, Wei Yanan1 |
1.School of Management, Jilin University, Changchun 130022 2.Research Center for Big Data Management, Jilin University, Changchun 130022 3.National Institute of Development and Security, Jilin University, Changchun 130022 4.School of Computer Science and Technology, Jilin University, Changchun 130022 |
|
|
Abstract By constructing the blockchain of the internet rumor detection model, the self-purification and traceable mechanism of internet rumor can be formed, which plays a certain role in promoting the public opinion supervision department to use the blockchain technology to govern internet rumor and guide public opinion. Based on blockchain technology and Unified Modeling Language graph, the premise of this study is based on the analysis of blockchain properties and working method, from the outbreak period of public opinion and audit of blockchain, the fermentation period of public opinion and filter of blockchain, the proliferation of public opinion to build the detection model of internet rumor, and combined with the Internet rumors “plastic rice” simulation experiment, to verify the validity of the detection model of internet rumor for blockchain. The simulation results indicated that the blockchain of the detection model of internet rumor can ensure the security and traceability of public opinion information transmission, purify the internet rumor, and ensure the integrity of public opinion information. The similarity function of the discrimination model is a relatively approximate method, which does not consider the upper limit of information storage. Thus, due to the continuous accumulation of mining difficulty, the calculation process of the hash value can be time-consuming.
|
Received: 17 December 2019
|
|
|
|
1 The global state of digital in October 2019[EB/OL]. [2019-11-05]. http://wearesocial.cn/blog/2019/10/25/the-global-state-of-digital-in-october-2019/. 2 郑建国, 朱君璇, 曹如中. 基于情境的社交网络信息传播链路预测研究[J]. 情报理论与实践, 2018, 41(6): 94-99. 3 Liu Y, Xu S H, Tourassi G. Detecting rumors through modeling information propagation networks in a social media environment[C]// Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Cham: Springer, 2015: 121-130. 4 Zubiaga A, Aker A, Bontcheva K, et al. Detection and resolution of rumours in social media: a survey[J]. ACM Computing Surveys, 2018, 51(2): 32-68. 5 Moin R, Rehman Z, Mahmood K, et al. Framework for rumors detection in social media[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(5): 439-444. 6 洪小娟, 姜楠, 夏进进. 基于社会网络分析的网络谣言研究——以食品安全微博谣言为例[J]. 情报杂志, 2014, 33(8): 161-167. 7 邓胜利, 付少雄. 网络谣言特征分析与预测模型设计: 基于用户信任视角[J]. 情报科学, 2017, 35(11): 8-12,22. 8 兰月新, 夏一雪, 刘冰月. 面向突发事件的网络谣言传播主体建模与仿真研究[J]. 情报科学, 2018, 36(5): 119-125. 9 王宁, 赵胜洋, 单晓红. 基于灰色系统理论的网络舆情预测与分级方法研究[J]. 情报理论与实践, 2019, 42(2): 120-126. 10 Jia J W, Wu W J. A rumor transmission model with incubation in social networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 491: 453-462. 11 Ma R. Spread of SARS and war-related rumors through new media in China[J]. Communication Quarterly, 2008, 56(4): 376-391. 12 Bordia P. Studying verbal interaction on the Internet: the case of rumor transmission research[J]. Behavior Research Methods, Instruments, & Computers, 1996, 28(2): 149-151. 13 Bordia P, Difonzo N. Problem solving in social interactions on the internet: rumor as social cognition[J]. Social Psychology Quarterly, 2004, 67(1): 33-49. 14 Nekovee M, Moreno Y, Bianconi G, et al. Theory of rumour spreading in complex social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 374(1): 457-470. 15 Goh D H L, Chua A Y K, Shi H Y, et al. An analysis of rumor and counter-rumor messages in social media[C]// Proceedings of the International Conference on Asian Digital Libraries. Cham: Springer, 2017: 256-266. 16 Extance A. The future of cryptocurrencies: bitcoin and beyond[J]. Nature, 2015, 526(7571): 21-23. 17 Blockchain[EB/OL]. [2018-09-10]. https://en.wikipedia.org/wiki/Blockchain. 18 Puthal D, Malik N, Mohanty S P, et al. The blockchain as a decentralized security framework [future directions][J]. IEEE Consumer Electronics Magazine, 2018, 7(2): 18-21. 19 朱建明, 付永贵. 基于区块链的供应链动态多中心协同认证模型[J]. 网络与信息安全学报, 2016, 2(1): 27-33. 20 Chen Y Z, Li Q L, Wang H. Towards trusted social networks with blockchain technology[OL]. (2018-02-22) [2020-04-08]. https://arxiv.org/pdf/1801.02796.pdf. 21 Fu D Q, Fang L R. Blockchain-based trusted computing in social network[C]// Proceedings of the 2nd IEEE International Conference on Computer and Communications. IEEE, 2016: 19-22. 22 林浩瀚. 基于区块链技术的网络谣言治理研究[D]. 呼和浩特: 内蒙古大学, 2019. 23 Liu Y H, Jin X L, Shen H W. Towards early identification of online rumors based on long short term memorynetworks[J]. Information Processing & Management, 2019, 56(4): 1457-1467. 24 赵丹, 王晰巍, 韩洁平, 等. 区块链环境下的网络舆情信息传播特征及规律研究[J]. 情报杂志, 2018, 37(9): 127-133,105. 25 Muzammal M, Qu Q, Nasrulin B. Renovating blockchain with distributed databases: an open source system[J]. Future Generation Computer Systems, 2019, 90: 105-117. 26 Kraft D. Difficulty control for blockchain-based consensus systems[J]. Peer-to-Peer Networking and Applications, 2016, 9(2): 397-413. 27 Dorri A, Steger M, Kanhere S S, et al. BlockChain: a distributed solution to automotive security and privacy[J]. IEEE Communications Magazine, 2017, 55(12): 119-125. 28 Di Pierro M. What is the blockchain?[J]. Computing in Science & Engineering, 2017, 19(5): 92-95. 29 Algredo-Badillo I, Feregrino-Uribe C, Cumplido R, et al. FPGA-based implementation alternatives for the inner loop of the Secure Hash Algorithm SHA-256[J]. Microprocessors and Microsystems, 2013, 37(6-7): 750-757. 30 Bhowmik D, Feng T. The multimedia blockchain: a distributed and tamper-proof media transaction framework[C]// Proceedings of the 22nd International Conference on Digital Signal Processing. IEEE, 2017: 1-5. 31 Alharby M, van Moorsel A. The impact of profit uncertainty on miner decisions in blockchain systems[J]. Electronic Notes in Theoretical Computer Science, 2018, 340: 151-167. 32 Aste T, Tasca P, Di Matteo T. Blockchain technologies: the foreseeable impact on society and industry[J]. Computer, 2017, 50(9): 18-28. 33 陈二静, 姜恩波. 文本相似度计算方法研究综述[J]. 数据分析与知识发现, 2017, 1(6): 1-11. 34 Georghiades Y, Flolid S, Vishwanath S. HashCore: proof-of-work functions for general purpose processors[C]// Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems. IEEE, 2019: 1951-1959. 35 Paul S, Joy J I, Sarker S, et al. Fake news detection in social media using blockchain[C]// Proceedings of the 2019 7th International Conference on Smart Computing & Communications. IEEE, 2019. 36 谷重阳, 徐浩煜, 周晗, 等. 基于词汇语义信息的文本相似度计算[J]. 计算机应用研究, 2018, 35(2): 391-395. 37 熊大平, 王健, 林鸿飞. 一种基于LDA的社区问答问句相似度计算方法[J]. 中文信息学报, 2012, 26(5): 40-45. 38 王晰巍, 张柳, 文晴, 等. 基于贝叶斯模型的移动环境下网络舆情用户情感演化研究——以新浪微博“里约奥运会中国女排夺冠”话题为例[J]. 情报学报, 2018, 37(12): 1241-1248. 39 新浪微博数据中心. 2018微博用户发展报告[EB/OL]. (2019-03-15) [2019-11-17]. https://data.weibo.com/report/reportDetail?id=433. 40 中国质量新闻网. 《食品谣言治理报告》发布食品药品类谣言敏感程度[EB/OL]. [2017-07-13]. http://www.cqn.com.cn/zgzlb/content/2017-07/13/content_4563191.htm. 41 Lee B, Lee J H. Blockchain-based secure firmware update for embedded devices in an Internet of Things environment[J]. The Journal of Supercomputing, 2017, 73(3): 1152-1167. |
|
|
|