|
|
Research on the Information Producer Distribution of a Network Q&A Community: An Empirical Analysis Based on the Music Portion of MetaFilter Data |
Yang Jinqing1, Ye Guanghui2 |
1.School of Information Management, Wuhan University, Wuhan 430072 2.School of Information Management, Central China Normal University, Wuhan 430079 |
|
|
Abstract To explore information producer distribution under the UGC (user-generated content) mode, in this study, the network Q&A community was taken as the research object. First, the comment, post, user, and timestamp data items of the music portion of the MetaFilter Q&A community was obtained as experimental data. Next, we verified the applicability of Lotka’s law to the distribution of comment frequency and number of users in the network Q&A community from the aspects of information productivity and social correlation strength, and explored the new characteristics of the user distribution law of the user??s social network. Finally, based on the power-law correlation of the user distribution phenomenon from the perspective of information productivity and social relevance strength, we explored the relationship between the social relevance strength of the user and information productivity. The experimental results show that Lotka??s law is still applicable to the UGC mode; the social network of users in the network Q&A community is a scale-free network. Users with strong social relevance may not produce large amounts of information, but there is a positive correlation between social relevance strength and information production, which can provide a reference for the formulation of management strategies for the network Q&A community.
|
Received: 28 October 2019
|
|
|
|
1 赵宇翔, 范哲, 朱庆华. 用户生成内容(UGC)概念解析及研究进展[J]. 中国图书馆学报, 2012, 38(5): 68-81. 2 范哲, 朱庆华, 赵宇翔. Web 2.0环境下UGC研究述评[J]. 图书情报工作, 2009, 53(22): 60-63, 102. 3 Jin J H, Li Y J, Zhong X J, et al. Why users contribute knowledge to online communities? An empirical study of an online social Q&A community[J]. Information & Management, 2015, 52(7): 840-849. 4 Sun Y Q, Fang Y L, Lim K H. Understanding sustained participation in transactional virtual communities[J]. Decision Support Systems, 2012, 53(1): 12-22. 5 Bao Z S, Han Z Y. What drives users’ participation in online social Q&A communities? An empirical study based on social cognitive theory [J]. Aslib Journal of Information Management, 2019, 71(5): 637-656. 6 楚林, 王忠义, 夏立新. 网络问答社区的知识生态系统研究[J]. 图书情报工作, 2016, 60(14): 47-55. 7 Lotka A J. The frequency distribution of scientific productivity[J]. Journal of the Franklin Institute, 1926, 202(2): 271. 8 魏瑞斌. 多视角对洛特卡定律的验证和阐释[J]. 情报杂志, 2007, 26(1): 113-114, 112. 9 Ahmed S M Z, Rahman M A. Lotka’s law and authorship distribution in nutrition research in Bangladesh[J]. Annals of Library and Information Studies, 2009, 56(2): 95-102. 10 Kumar N. Applicability to Lotka’s law to research productivity of Council of Scientific and Industrial Research (CSIR), India[J]. Annals of Library & Information Studies, 2010, 57(1): 7-11. 11 Baskaran C. Research productivity of graph theory during 2004-2011: A bibliometric study[J]. SRELS Journal of Information Management, 2012, 49(6): 683-691. 12 Tsai H H. The research trends forecasted by bibliometric methodology: A case study in e-commerce from 1996 to July 2015[J]. Scientometrics, 2015, 105(2): 1079-1089. 13 Mohamed S B. Lotka??s applicability on global dengue research publication: A scientometric study[J]. DESIDOC Journal of Library & Information Technology, 2018, 38(4): 266-270. 14 de Oliveira A O, Oliveira H L S, Gomes C F S, et al. Quantitative analysis of RFID?? publications from 2006 to 2016[J]. International Journal of Information Management, 2019, 48: 185-192. 15 Petek M. Personal name headings in COBIB: Testing Lotka??s law[J]. Scientometrics, 2008, 75(1): 175-188. 16 Wang D B, Zhu D H, Su X N. Lotka phenomenon in the words??syntactic distribution complexity[J]. Scientometrics, 2012, 90(2): 483-498. 17 Asur S, Huberman B A. Predicting the future with social media[C]// Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Washington, DC: IEEE Computer Society, 2010: 492-499. 18 邱均平, 余凡. 网络学术信息作者分布规律研究——以科学网博客为例[J]. 图书情报工作, 2011, 55(20): 15-18, 35. 19 宋恩梅, 朱梦娴. 社会化媒体信息分布规律研究: 以电影评论为例[J]. 信息资源管理学报, 2015, 5(3): 25-36. 20 袁红, 赵磊. 微博社区信息交流网络结构与交流模式研究[J]. 现代情报, 2012, 32(9): 48-52, 56. 21 Newman M E J. Power laws, Pareto distributions and Zipf’s law[J]. Contemporary Physics, 2005, 46(5): 323-351. 22 Simon H A. On a class of skew distribution functions[J]. Biometrika, 1955, 42(3-4): 425-440. 23 方曙. 布-齐-洛分布的分形模型[J]. 情报科学, 1990, 8(5): 25-30. 24 刘则渊, 朱晓宇. 国际科学计量学及其姊妹学科的计量与图谱[J]. 科技导报, 2012, 30(7): 68-79. 25 Bensman S J, Smolinsky L J. Lotka’s inverse square law of scientific productivity: Its methods and statistics[J]. Journal of the Association for Information Science and Technology, 2017, 68(7): 1786-1791. 26 Mayernik M. The distributions of MARC fields in bibliographic records: A power law analysis[J]. Library Resources & Technical Services, 2010, 54(1): 40-54. 27 Bell G G. Clusters, networks, and firm innovativeness[J]. Strategic Management Journal, 2005, 26(3): 287-295. 28 夏立新, 杨金庆, 叶光辉, 等. 网络问答社区中的用户知识转移模式研究——基于MetaFilter AskMe版块的实证分析[J]. 情报学报, 2019, 38(5): 447-457. 29 叶光辉, 李纲. 社会语义网络结构分析——以MetaFiher为例[J]. 情报理论与实践, 2015, 38(12): 57-63. 30 马费成, 宋恩梅. 信息管理学基础[M]. 第2版. 武汉: 武汉大学出版社, 2010: 80-83. 31 张兴刚, 袁毅. 问答类社区用户关系网络研究——以百度“知道”为例[J]. 情报理论与实践, 2011, 34(11): 61-63, 30. 32 NewmanM E J. 网络科学引论[M]. 郭世泽, 陈哲, 译. 北京: 电子工业出版社, 2014: 28-31, 157-168. |
|
|
|