|
|
Frontier Detection in Interdisciplinary Research from the Perspective of Altmetrics: Taking Medical Informatics as an Example |
Wang Feifei, Liu Ming |
School of Economics and Management, Beijing University of Technology, Beijing 100124 |
|
|
Abstract This paper combines the data of Altmetrics based on online data with the traditional method of frontier detection to compensate for the shortcomings of the traditional leading edge detection method. To this end, this study used the Web of Science database and the Altmetric.com platform to obtain traditional metrics and data of Altmetrics. Five evaluation indicators were constructed for the frontier detection of the study—immediacy, growth, scientific influence, social attention, and intersectionality. Specifically, 55 research topics were extracted from experimental data using the LDA algorithm, and the frontier detection indicator score for each topic was calculated. Next, the principal component analysis method, the entropy weight method, and the gray correlation degree method were used to comprehensively evaluate the five evaluation indicators for each topic. By calculating the Kendall’s Coefficient of Concordance of the three evaluation methods, it can be verified that the evaluation method results are consistent and the results are acceptable. Finally, four topics were selected as cutting-edge topics with better frontier properties according to the skyline method. The experimental results show that the introduction of Altmetrics data can supplement the traditional frontier detection method, and the final extracted result is ideal, which is in line with the actual development needs.
|
Received: 12 July 2019
|
|
|
|
1 金路, 郭胜伟. Altmetrics: 基于社交网络的新测度工具[J]. 科技视界, 2018(19): 90-93. 2 余厚强, 任全娥, 张洋, 等. Altmetrics的译名分歧: 困扰、影响及其辨析[J]. 中国图书馆学报, 2019, 45(1): 47-59. 3 Priem J, Taraborelli D, Groth P, et al. Altmetrics: A manifesto[EB/OL]. [2019-02-03]. http://altmetrics.org/manifesto/. 4 王睿, 胡文静, 郭玮. 高Altmetrics指标科技论文学术影响力研究[J]. 图书情报工作, 2014, 58(21): 92-98. 5 林晓华. 基于Altmetrics指标的学术论文综合影响力研究[J]. 高校图书馆工作, 2018, 38(5): 36-40. 6 韦博, 由庆斌. 基于补充计量学的热点推送平台构建[J]. 情报理论与实践, 2016, 39(8): 111-114, 144. 7 李小涛, 金心怡. 基于Altmetrics的《科学计量学》研究热点与前沿分析[J]. 现代情报, 2019, 39(1): 153-160. 8 Donato H. Traditional and alternative metrics: The full story of impact[J]. Revista Portuguesa de Pneumologia (English Edition), 2014, 20(1): 1-2. 9 Azer S A, Azer S. Top-cited articles in medical professionalism: A bibliometric analysis versus altmetric scores[J]. BMJ Open, 2019, 9(7): e029433. 10 Wooldridge J, King M B. Altmetric scores: An early indicator of research impact[J]. Journal of the Association for Information Science and Technology, 2019, 70(3): 271-282. 11 Zhang X, Wang X H, Zhao H K, et al. An effectiveness analysis of altmetrics indices for different levels of artificial intelligence publications[J]. Scientometrics, 2019, 119(3): 1311-1344. 12 Hassona Y, Qutachi T, Dardas L, et al. The online attention to oral cancer research: An Altmetric analysis[J]. Oral Diseases, 2019, 25(6): 1502-1510. 13 Kim Y, Kim J E, Kim Y H, et al. Social attention and scientific articles on stroke: Altmetric analysis of top-50 articles[J]. Clinical Neurology and Neurosurgery, 2019, 183: 105386. 14 de Solla Price D J. Networks of scientific papers[J]. Science, 1965, 149(3683): 510-515. 15 Garfield E. Research fronts[J]. Current Contents, 1994, 41(10): 3-7. 16 Persson O. The intellectual base and research fronts of JASIS 1986-1990[J]. Journal of the American Society for Information Science, 1994, 45(1): 31-38. 17 陈超美. CiteSpaceⅡ: 科学文献中新趋势与新动态的识别与可视化[J]. 陈悦, 侯剑华, 梁永霞, 译. 情报学报, 2009, 28(3): 401-421. 18 梁永霞, 杨中楷, 刘则渊. 基于CiteSpaceⅡ的航空航天工程前沿研究[J]. 科学学研究, 2008, 26(S2): 303-312. 19 Shibata N, Kajikawa Y, Sakata I. Detecting potential technological fronts by comparing scientific papers and patents[J]. Foresight, 2011, 13(5): 51-60. 20 Zhao D Z, Strotmann A. Can citation analysis of Web publications better detect research fronts?[J]. Journal of the American Society for Information Science and Technology, 2007, 58(9): 1285-1302. 21 Kessler M M. Bibliographic coupling between scientific papers[J]. American Documentation, 1963, 14(1): 10-25. 22 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 23 Callon M, Law J, Rip A. Mapping the dynamics of science and technology: Sociology of science in the real world[M]. London: Palgrave Macmillan, 1986. 24 Chen C M. CiteSpaceⅡ: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. 25 郭芳琪. 前瞻性科学前沿的界定与识别指标的文献计量研究[D]. 大连: 大连理工大学, 2018. 26 吴菲菲, 杨梓, 黄鲁成. 基于创新性和学科交叉性的研究前沿探测模型——以智能材料领域研究前沿探测为例[J]. 科学学研究, 2015, 33(1): 11-20. 27 Wang Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 290-304. 28 范少萍, 安新颖, 倪萍. 基于文献的研究前沿特征与识别方法研究[J]. 情报工程, 2017, 3(1): 56-65. 29 How is the Altmetric Attention Score calculated?[EB/OL]. [2019-06-21]. https://help.altmetric.com/support/solutions/articles/6000060969-how-is-the-altmetric-attention-score-calculated-. 30 南英子. 实证分析中运用主成分分析法应注意的几个问题[J]. 统计与决策, 2009(21): 155-156. 31 邱菀华. 管理决策熵学及其应用[M]. 北京: 中国电力出版社, 2011: 1. 32 刘思峰. 灰色系统理论及其应用[M]. 第3版. 北京: 科学出版社, 2004. 33 Sidiropoulos A, Gogoglou A, Katsaros D, et al. Gazing at the skyline for star scientists[J]. Journal of Informetrics, 2016, 10(3): 789-813. 34 赵文暄, 王志仁, 王永前, 等. 基于互联网与传统的认知行为治疗对神经症性障碍疗效的meta分析[J]. 中国心理卫生杂志, 2019, 33(5): 328-333. 35 刘雪莲, 王雅琴, 陈志恒, 等. 可穿戴设备在家庭健康及慢病自我管理中的应用[J]. 中国保健营养, 2017, 27(19): 396-397. 36 赖榕霏, 江智霞, 袁晓丽, 等. “互联网+”背景下老年骨折病人康复训练研究进展[J]. 护理研究(上旬版), 2017(2): 388-391. 37 黄鹂, 曹东维. 国际医学信息学领域大数据研究热点分析[J]. 医学信息学杂志, 2018, 39(4): 1-7. 38 魏丽, 张云秋, 冯佳. 国外医学信息学领域研究前沿[J]. 中华医学图书情报杂志, 2015, 24(11): 27-31. 39 李小涛, 金心怡, 李艳, 等. 基于ESI高被引论文的医学信息学研究前沿可视化分析[J]. 现代情报, 2018, 38(12): 120-125. 40 周艳玲, 田玲. 基于内容分析法的我国大数据时代下医学信息学发展状况研究[C]// 中华医学会第二十一次全国医学信息学术会议论文汇编. 北京: 中华医学会, 2015: 151-153. |
|
|
|