|
|
Research on the Distribution and Evolution of Interdisciplinarity in the Multidisciplinary Cross-Synthesis Research Field |
Cao Jiajun1, Wang Yuefen1, Chen Shengzhi2, Zou Bentao1 |
1.School of Economics & Management, Nanjing University of Science & Technology, Nanjing 210094 2.School of Computer Science & Engineering, Nanjing University of Science & Technology, Nanjing 210094 |
|
|
Abstract The purpose of this study is to reveal the core disciplines in a multi-disciplinary field and to analyze the internal relationship and evolution. This study takes artificial intelligence (AI) as its research object, discusses the distribution of related disciplines in this field, and analyzes the relationships, similarities, and evaluations between them to provide data support and decision-making structures for scientific research and policy-making. After pre-processing and analyzing literature data, keywords were used to express the research content of subjects and construct subject vectors through a bag-of-words model. Then, the distribution of AI-related subjects, the similarities and evolution between AI and other subjects, as well as between related subjects are studied from three aspects: Basic statistics, co-occurrence analysis, and similarity analysis. The results indicate that in the field of artificial intelligence, computer science and engineering fields are the most prominent, mathematics is its basis, and its research is gradually spreading to social sciences, biological sciences, and other fields. AI research is developed from single theoretical and technical research to multidisciplinary applications. The diversification of disciplines in this field also promotes the research content diversification of management and law. This shows that the analysis path can reveal the interdisciplinary development trends of subject research to a certain extent.
|
Received: 10 October 2019
|
|
|
|
1 WagnerC S, RoessnerJ D, BobbK, et al. Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature[J]. Journal of Informetrics, 2011, 5(1): 14-26. 2 许海云, 尹春晓, 郭婷, 等. 学科交叉研究综述[J]. 图书情报工作, 2015, 59(5): 119-127. 3 刘仲林. 交叉科学时代的交叉研究[J]. 科学学研究, 1993(2): 11-18, 4. 4 吴丹青, 张菊, 赵杭丽, 等. 学科交叉模式及发展条件[J]. 科研管理, 2005, 26(5): 157-160. 5 StirlingA. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface, 2007, 4(15): 707-719. 6 RafolsI, MeyerM. Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287. 7 陈赛君, 陈智高. 领域交叉性分析指标与方法新探及其实证研究[J]. 情报学报, 2013, 32(11): 1184-1195. 8 杨良斌, 周秋菊, 金碧辉. 基于文献计量的跨学科测度及实证研究[J]. 图书情报工作, 2009, 53(10): 87-90, 115. 9 PodlubnyI. Comparison of scientific impact expressed by the number of citations in different fields of science[J]. Scientometrics, 2005, 64(1): 95-99. 10 SlyderJ B, SteinB R, SamsB S, et al. Citation pattern and lifespan: A comparison of discipline, institution, and individual[J]. Scientometrics, 2011, 89(3): 955-966. 11 LillquistE, GreenS. The discipline dependence of citation statistics[J]. Scientometrics, 2010, 84(3): 749-762. 12 LuoF H, SunA X, ErdtM, et al. Exploring prestigious citations sourced from top universities in bibliometrics and altmetrics: A case study in the computer science discipline[J]. Scientometrics, 2018, 114(1): 1-17. 13 邱均平, 曹洁. 不同学科间知识扩散规律研究——以图书情报学为例[J]. 情报理论与实践, 2012, 35(10): 1-5. 14 魏建香, 孙越泓, 苏新宁. 学科交叉知识挖掘模型研究[J]. 情报理论与实践, 2012, 35(4): 76-80. 15 李长玲, 郭凤娇, 魏绪秋. 基于时序关键词的学科交叉研究主题分析——以情报学与计算机科学为例[J]. 情报资料工作, 2014(6): 44-48. 16 岳增慧, 许海云, 郭婷, 等. “情报学”与“计算机跨学科应用”的学科交叉对比研究[J]. 情报资料工作, 2016(2): 16-22. 17 叶春蕾. 基于Web of Science学科分类的主题研究领域跨学科态势分析方法研究[J]. 图书情报工作, 2018, 62(2): 127-134. 18 BeelJ, GippB, LangerS, et al. Research-paper recommender systems: A literature survey[J]. International Journal on Digital Libraries, 2016, 17(4): 305-338. 19 MadylovaA, OguducuS G. A taxonomy based semantic similarity of documents using the cosine measure[C]// Proceedings of the 24th International Symposium on Computer and Information Sciences. IEEE, 2009. 20 HintonG E, OsinderoS, TehY W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
|
|
|