|
|
The Quantitative Algorithm of Sentiment Divergence Based on Web User Reviews |
Xu Jian, Wu Siyang |
School of Information Management, Sun Yat-sen University, Guangzhou 510006 |
|
|
Abstract The main aim of this paper is to provide a new method and perspective to analyze the sentiment of web user reviews from the standpoint of sentiment divergence. Drawing on the five existing formulas for calculating the degrees of difference and dispersion, integrating the emotional elements and applying them to the scene for calculating sentiment divergence, five algorithms for measuring sentiment divergence based on emotional value difference, standard deviation, coefficient of variation, information entropy, and probability of emotional distribution are obtained. An algorithm for measuring sentiment divergence based on the frequency of positive and negative emotional values is proposed, which takes advantage of the fact that emotional values can be positive or negative. It is based on the sentiment analysis of text. This paper puts forward six quantitative algorithms of sentiment divergence to quantify the sentiment divergence of user reviews and analyzes the quantified results of sentiment divergence. The results show that the model can achieve the quantification of the sentiment divergence of web user reviews. However, there are differences in applicability and discrimination of different quantitative algorithms of sentiment divergence.
|
Received: 23 March 2019
|
|
|
|
1 黄卫东, 陈凌云, 吴美蓉. 网络舆情话题情感演化研究[J]. 情报杂志, 2014, 33(1): 102-107. 2 张紫琼, 叶强, 李一军. 互联网商品评论情感分析研究综述[J]. 管理科学学报, 2010, 13(6): 84-96. 3 宋恩梅, 何帆. 基于多网站的商品评论倾向性研究: 以手机为例[J]. 图书馆学研究, 2016(2): 85-92. 4 郑飏飏, 徐健, 肖卓. 情感分析及可视化方法在网络视频弹幕数据分析中的应用[J]. 现代图书情报技术, 2015(11): 82-90. 5 王英, 龚花萍. 基于情感维度的大数据网络舆情情感倾向性分析研究——以“南昌大学自主保洁”微博舆情事件为例[J]. 情报科学, 2017, 35(4): 37-42. 6 姜国华. 关于证券分析师对中国上市公司会计收益预测的实证研究[J]. 经济科学, 2004(6): 72-79. 7 白晓宇. 上市公司信息披露政策对分析师预测的多重影响研究[J]. 金融研究, 2009(4): 92-112. 8 AvramovD, ChordiaT, JostovaG, et al. Dispersion in analysts’ earnings forecasts and credit rating[J]. Journal of Financial Economics, 2009, 91(1): 83-101. 9 王玉涛, 王彦超. 业绩预告信息对分析师预测行为有影响吗[J]. 金融研究, 2012(6): 193-206. 10 HarjotoM, JoH. Legal vs. Normative CSR: Differential impact on analyst dispersion, stock return volatility, cost of capital, and firm value[J]. Journal of Business Ethics, 2015, 128(1): 1-20. 11 BarronO E, StanfordM H, YuY. Further evidence on the relation between analysts’ forecast dispersion and stock returns[J]. Contemporary Accounting Research, 2009, 26(2): 329-357. 12 TirasS L. The influence of forecast dispersion on the incremental explanatory power of earnings, book value and analyst forecasts on market prices[J]. Accounting Review, 2007, 82(3): 651-677. 13 LiM Y, WuJ S. Analysts’ forecast dispersion and stock returns: A quantile regression approach[J]. Journal of Behavioral Finance, 2014, 15(3): 175-183. 14 尹慧, 赵国庆. 异质信念与投资风险[J]. 金融经济学研究, 2013, 28(1): 46-58. 15 张立凡, 赵凯. 媒体干预下带有讨论机制的网络舆情传播模型研究[J]. 现代图书情报技术, 2015(11): 60-67. 16 CaoN, LuL, LinY R, et al. SocialHelix: Visual analysis of sentiment divergence in social media[J]. Journal of Visualization, 2015, 18(2): 221-235. 17 ZhangZ, LiX, ChenY. Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews[J]. ACM Transactions on Management Information Systems, 2012, 3(1): Article No. 5. 18 Suba?i?I, BerendtB. Peddling or creating? Investigating the role of Twitter in news reporting[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2011, 6611: 207-213. 19 SiganosA, Vagenas-NanosE, VerwijmerenP. Divergence of sentiment and stock market trading[J]. Journal of Banking & Finance, 2017, 78: 130-141. 20 TangE K, SuganthanP N, YaoX. An analysis of diversity measures[J]. Machine Learning, 2006, 65(1): 247-271. 21 巴志超, 李纲, 朱世伟. 科研合作网络的知识扩散机理研究[J].中国图书馆学报, 2016, 42(5): 68-84. 22 李纲, 巴志超. 科研合作超网络下的知识扩散演化模型研究[J]. 情报学报, 2017, 36(3): 274-284. 23 杨思洛, 程爱娟. 图情档期刊论文的零被引现象分析[J]. 情报学报, 2015, 34(3): 247-256. 24 ShannonC E. A mathematical theory of communication[J] ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1). 25 张慧玲, 许海云, 刘春江. 学科交叉期刊的识别方法研究[J]. 情报学报, 2018, 37(11): 1140-1153. 26 KohaviR, WolpertD. Bias plus variance decomposition for zero-one loss functions[C]// Proceedings of the Thirteenth International Conference on International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., 1996: 275-283. 27 徐琳宏, 林鸿飞, 潘宇, 等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185. 28 结巴分词组件[EB/OL]. [2019-01-08]. https://github.com/fxsjy/jieba. 29 弹幕多维情感词典[DB/OL]. (2015-06-07) [2019-01-08]. https://wenku.baidu.com/view/22191501b9d528ea81c779dd.html. |
|
|
|