|
|
Query-oriented Opinion Summarization Model Using Debatepedia as Datasource |
Yu Chuanming1, Zheng Zhiliang1,2, Zhu Xingyu1, An Lu3 |
1.School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073 2.McKelvey School of Engineering, Washington University in St. Louis , St. Louis, Missouri 63130 3.School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract This study systematically studies query-oriented opinion summarization, aiming to construct a query-oriented opinion summarization framework to explore the impact of different text summarization methods on the opinion summarization. Considering sentiment orientation and the similarity between the sentence and query, we extract the sentences from the original documents and employ neural networks and word embeddings to achieve abstractive summarization. The query-oriented opinion summarization framework is then constructed upon this. We crawl the topics and arguments to build the experimental opinion summarization dataset from the Debatepedia websites and apply the proposed method to the dataset to validate its effect. The experimental results show that on this dataset, the summaries generated by the extractive method are of higher quality; the highest average ROUGE score, deep semantic similarity score, and emotional score are 6.58%, 1.79%, and 11.52% higher than the generative method, and 8.33%, 2.80%, and 13.86% higher than the combined method, respectively. Furthermore, the evaluation indicator deep sentence similarity and the sentiment score proposed in this study can better evaluate the effects of the query-oriented opinion summarization model. The research results are of great significance for improving the effects of query-oriented opinion summarization and promoting the application of the opinion summarization model in the field of information science.
|
Received: 10 October 2019
|
|
|
|
1 LinC Y. ROUGE: A package for automatic evaluation of summaries[C]// Proceedings of the Association for Computational Linguistics Workshop on Text Summarization Branches Out. Stroudsburg: Association for Computational Linguistics, 2004: 74-81. 2 NóbregaF A A, AgostiniV, CamargoR T, et al. Alignment-based sentence position policy in a news corpus for multi-document summarization[C]// Proceedings of the International Conference on Computational Processing of the Portuguese Language. Cham: Springer, 2014, 8775: 286-291. 3 张晗, 赵玉虹. 基于语义图的医学多文档摘要提取模型构建[J]. 图书情报工作, 2017, 61(8): 112-119. 4 VermaJ P. Evaluation of unsupervised learning based extractive text summarization technique for large scale review and feedback data[J]. Indian Journal of Science and Technology, 2017, 10(17): 1-3. 5 GeraniS, CareniniG, NgR T. Modeling content and structure for abstractive review summarization[J]. Computer Speech & Language, 2019, 53: 302-331. 6 KhanA, SalimN, FarmanH, et al. Abstractive text summarization based on improved semantic graph approach[J]. International Journal of Parallel Programming, 2018, 46(5): 992-1016. 7 López CondoriR E, Salgueiro PardoT A. Opinion summarization methods: Comparing and extending extractive and abstractive approaches[J]. Expert Systems with Applications, 20172, 78: 124-134. 8 DingY, JiangJ. Towards opinion summarization from online forums[C]// Proceedings of the International Conference on Recent Advances in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 138-146. 9 MoreM, TidkeB. Social media online opinion summarization using ensemble technique[C]// Proceedings of the International Conference on Pervasive Computing. New York: IEEE, 2015: 1-6. 10 HuangS L, ChengW C. Discovering Chinese sentence patterns for feature-based opinion summarization[J]. Electronic Commerce Research and Applications, 2015, 14(6): 582-591. 11 OthmanR, BelkarouiR, FaizR. Customer opinion summarization based on Twitter conversations[C]// Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics. New York: ACM Press, 2016: 4. 12 WangD, LiuY. Opinion summarization on spontaneous conversations[J]. Computer Speech & Language, 2015, 34(1): 61-82. 13 温浩, 乔晓东. 文摘创新点的语义本体模型研究[J]. 情报学报, 2017, 36(9): 964-971. 14 沈思, 胡昊天, 叶文豪, 等. 基于全字语义的摘要结构功能自动识别研究[J]. 情报学报, 2019, 38(1): 79-88. 15 唐晓波, 肖璐. 基于单句粒度的微博主题挖掘研究[J]. 情报学报, 2014, 33(6): 623-632. 16 刘如, 张惠娜, 杜丽萍, 等. 基于情报3.0工作思路的自动简报系统设计与实现[J]. 情报学报, 2018, 37(2): 172-182. 17 刘柏嵩, 赵福青. 基于微观点的产品评论微摘要研究[J]. 情报学报, 2015, 34(9): 970-977. 18 MaJ, LuoS L, YaoJ G, et al. Efficient opinion summarization on comments with online-LDA[J]. International Journal of Computers Communications & Control, 2016, 11(3): 414-427. 19 RautV B, LondheD D. Opinion mining and summarization of hotel reviews [C]// Proceedings of the International Conference on Computational Intelligence and Communication Networks. New York: IEEE, 2014: 556-559. 20 KimH D, CastellanosM G, HsuM, et al. Ranking explanatory sentences for opinion summarization[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 1069-1072. 21 王树义, 廖桦涛, 吴查科. 基于情感分类的竞争企业新闻文本主题挖掘[J]. 数据分析与知识发现, 2018, 2(3): 70-78. 22 NallapatiR, XiangB, ZhouB. Sequence-to-sequence RNNs for text summarization[OL]. [2019-04-30]. https://openreview.net/pdf?id=gZ9OMgQWoIAPowrRUAN6. 23 NallapatiR, ZhouB, GulcehreC, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[OL]. [2019-04-30]. https://arxiv.org/pdf/1602.06023.pdf%20http://arxiv.org/abs/1602.06023.pdf. 24 RossielloG, BasileP, SemeraroG, et al. Improving neural abstractive text summarization with prior knowledge[OL]. [2019-04-30]. https://arxiv.org/pdf/1812.02303. 25 苏放, 王晓宇, 张治. 基于注意力机制的评论摘要生成[J]. 北京邮电大学学报, 2018, 41(3): 7-13. 26 余传明, 朱星宇, 龚雨田, 等. 基于序列到序列模型的抽象式中文文本摘要研究[J]. 图书情报工作, 2019, 63(11): 108-117. 27 ZhangY, ErM J, ZhaoR, et al. Multiview convolutional neural networks for multidocument extractive summarization[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3230-3242. 28 LiQ D, JinZ P, WangC, et al. Mining opinion summarizations using convolutional neural networks in Chinese microblogging systems[J]. Knowledge-Based Systems, 2016, 107(6): 289-300. 29 WuH B, GuY W, SunS D, et al. Aspect-based opinion summarization with convolutional neural networks[C]// Proceedings of the International Joint Conference on Neural Networks. New York: IEEE, 2016: 3157-3163. 30 WangL, RaghavanH, CardieC, et al. Query-focused opinion summarization for user-generated content[OL]. [2019-04-30]. https://arxiv.org/pdf/1606.05702.pdf. 31 AbdiA, ShamsuddinS M, AliguliyevR M. QMOS: Query-based multi-documents opinion-oriented summarization[J]. Information Processing & Management, 2018, 54(2): 318-338. 32 BahdanauD, ChoK, BengioY. Neural machine translation by jointly learning to align and translate[OL]. [2019-04-30]. https://arxiv.org/pdf/1409.0473.pdf. 33 LuongM T, PhamH, ManningC D. Effective approaches to attention-based neural machine translation[OL]. [2019-04-30]. https://arxiv.org/pdf/1508.04025.pdf. 34 ErkanG, RadevD R. LexRank: Graph-based lexical centrality as salience in text summarization[J]. Journal of Artificial Intelligence Research, 2004, 22(1): 457-479. 35 AroraS, LiangY, MaT. A simple but tough-to-beat baseline for sentence embeddings[OL]. [2019-04-30]. https://openreview.net/pdf?id=SyK00v5xx. 36 KusnerM J, SunY, KolkinN I, et al. From word embeddings to document distances[OL]. [2019-04-30]. http://proceedings.mlr.press/v37/kusnerb15.pdf. 37 RobertsonS E, WalkerS. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval[C]// Proceedings of the Annual Conference of Special Interest Group on Information Retrieval. London: Springer, 1994: 232-241. |
|
|
|