|
|
Multi-source Information Fusion Analysis for Emerging Technology Development Trend Identification, Using Blockchain as an Example |
Zhang Weichong1,2, Wang Fang1,3, Zhao Hong1,2 |
1.Department of Information Resources Management, Business School, Nankai University, Tianjin 300071 2.CEC Data Research Institute Co., Ltd. Guiyang 550081 3.The Center for Network Society Governance, Nankai University, Tianjin 300071 |
|
|
Abstract The scientific literature is constantly being enriched, and has become valuable quantitative analysis data. The information fusion analysis of different sources and different types of scientific and technical literature can provide powerful information support for comprehensively revealing the development status and trends of emerging technologies. The efficient acquisition of topics from multi-source heterogeneous data is a technical difficulty in solving the problem of “subject” measurement entities in multi-source information fusion. This article is aimed at studying seven different scientific and technical literature types: patents, journal articles, dissertations, conference papers, books, funding projects, and industry reports. A summary-based topic analysis method is proposed. The topic words are obtained from multi-source heterogeneous texts, and data fusion and topic association analysis are performed. The results are effective and efficient, which provides a reference for solving the problem. In the experiment, blockchain is taken as an example. Based on data fusion, sequential association analysis and topic association analysis are carried out to reveal the development of blockchain technology. The results show that the method effectively reveals the production process, the theme diffusion, and the evolution trajectory of blockchain technology innovation in the scientific literature.
|
Received: 17 May 2019
|
|
|
|
1 化柏林, 武夷山. 多“源”信息需要多“方”融合[J]. 情报学报, 2013, 32(3): 225. 2 XuW H, YuJ H. A novel approach to information fusion in multi-source datasets: A granular computing viewpoint[J]. Information Sciences, 2017, 378: 410-423. 3 郑彦宁, 刘志辉, 赵筱媛, 等. 基于多源信息与多元方法的产业竞争情报分析范式[J]. 情报学报, 2013, 32(3): 228-234. 4 化柏林, 李广建. 大数据环境下多源信息融合的理论与应用探讨[J]. 图书情报工作, 2015, 59(16): 5-10. 5 KhaleghiB, KhamisA, KarrayF O, et al. Multisensor data fusion: A review of the state-of-the-art[J]. Information Fusion, 2013, 14(1): 28-44. 6 化柏林. 多源信息融合方法研究[J]. 情报理论与实践, 2013, 36(11): 16-19. 7 KunreutherH C. Wharton on managing emerging technologies[M]. Chichester: John Wiley & Sons, 2004. 8 李欣, 谢前前, 洪志生, 等. 基于社会感知分析的新兴技术发展趋势研究——以钙钛矿太阳能电池技术为例[J]. 科技进步与对策, 2018, 35(10): 15-24. 9 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4): 481-494. 10 吕晨, 张旭, 赵蕴华, 等. 新兴技术选择方法研究[J]. 科技管理研究, 2012, 32(23): 228-231. 11 LiX, ZhouY, XueL, et al. Integrating bibliometrics and roadmapping methods: A case of dye-sensitized solar cell technology-based industry in China[J]. Technological Forecasting and Social Change, 2015, 97: 205-222. 12 GuoJ F, WangX F, LiQ R, et al. Subject-action-object-based morphology analysis for determining the direction of technological change[J]. Technological Forecasting and Social Change, 2016, 105: 27-40. 13 惠国保. 一种基于深度学习的多源异构数据融合方法[J]. 现代导航, 2017, 8(3): 218-223. 14 赵杰, 崔智社, 徐明进, 等. 信息融合的实质及其核心技术[J]. 情报指挥控制系统与仿真技术, 2003, 25(8): 38-42. 15 祝振媛, 李广建. “数据—信息—知识”整体视角下的知识融合初探——数据融合、信息融合、知识融合的关联与比较[J]. 情报理论与实践, 2017, 40(2): 12-18. 16 许海云, 董坤, 隗玲, 等. 科学计量中多源数据融合方法研究述评[J]. 情报学报, 2018, 37(3): 318-328. 17 于洪, 何德牛, 王国胤, 等. 大数据智能决策[J/OL]. 自动化学报, 2019, http://kns.cnki.net/kcms/detail/11.2109.TP.20190422.1029.008.html. 18 MorrisS A, YenG G. Construction of bipartite and unipartite weighted networks from collections of journal papers[OL]. https://arxiv.org/pdf/physics/0503061.pdf. 19 许海云, 董坤, 刘春江, 等. 文本主题识别关键技术研究综述[J]. 情报科学, 2017, 35(1): 153-160. 20 武华维, 罗瑞, 许海云, 等. 科学技术关联视角下的创新演化路径识别研究述评[J]. 情报理论与实践, 2018, 41(8): 137-143. 21 朱军文, 刘念才. 科研评价: 目的与方法的适切性研究[J]. 北京大学教育评论, 2012, 10(3): 47-56, 188. 22 张娴, 方曙, 肖国华, 等. 专利文献价值评价模型构建及实证分析[J]. 科技进步与对策, 2011, 28(6): 127-132. 23 国家自然科学基金委员会. 2019项目指南[EB/OL]. [2019-03-03]. http://www.nsfc.gov.cn/nsfc/cen/xmzn/2019xmzn/index.html. 24 大为公司. 大为专利搜索引擎[EB/OL]. [2019-03-04]. http://www.innojoy.com/. 25 国家图书馆. 国家图书馆馆藏目录查询系统[EB/OL]. [2019-03-05]. http://opac.nlc.cn/F/K7VJVUHEJJYJ3CCRNHSQE8SE7 CY39TCH24IC8GAXCU1A7I645M-07979?func=find-b-0. 26 LetPub. 自科基金查询LetPub最新科学基金结果查询系统[EB/OL]. [2019-03-01]. http://www.letpub.com.cn/index.php?page=grant. 27 国家社科基金. 国家社科基金项目数据库[EB/OL]. [2019-02-17]. http://fz.people.com.cn/skygb/sk/. 28 nance/blockchain. 29 国家图书馆. 中国政府公开信息整合服务平台[EB/OL]. [2019-02-17]. http://govinfo.nlc.cn/lmzz/index_4602.html?new=1. 30 中国互联网数据资讯中心. 微信指数[EB/OL]. [2019-02-18]. http://www.199it.com/wechat_index. 31 MehtaP, MajumderP. Effective aggregation of various summarization techniques[J]. Information Processing & Management, 2018, 54(2): 145-158. 32 傅瑶, 孙玉涛, 刘凤朝. 美国主要技术领域发展轨迹及生命周期研究——基于S曲线的分析[J]. 科学学研究, 2013, 31(2): 209-216. 33 马天旗. 专利分析——方法、图表解读与情报挖掘[M]. 北京: 知识产权出版社, 2015. 34 从中文文本中自动提取关键词和摘要[EB/OL]. [2019-01-20]. https://github.com/letiantian/TextRank4ZH. 35 WenY J, YuanH, ZhangP Z. Research on keyword extraction based on word2vec weighted TextRank[C]// Proceedings of the 2nd IEEE International Conference on Computer and Communications. New York: IEEE, 2016. 36 周群, 化柏林. 基于多源数据融合的科技决策需求主题识别研究[J]. 情报理论与实践, 2019, 42(3): 107-113. 37 郑彦宁, 许晓阳, 刘志辉. 基于关键词共现的研究前沿识别方法研究[J]. 图书情报工作, 2016, 60(4): 85-92. |
|
|
|