|
|
Social Trust, Rational Behavior, and Government MicroblogsDissemination: An Empirical Analysis Based on Text Mining |
Feng Xiaodong1, Ma Jie2, Jiang Guoyin1 |
1.School of Public Administration, University of Electronic Science and Technology of China, Chengdu 611731 2.School of Economic and Management, University of Electronic Science and Technology of China, Chengdu 611731 |
|
|
Abstract Social media, represented by government microblogs, has gradually become a new channel for the government to provide public services and communicate with the public, and mining the behavioral characteristics of public online information dissemination helps to deliver the most precise service in the context of the Internet and the management of the public opinion of the network. The paper, using the theory of social capital and rational behavior, proposes a novel model to explain the dissemination effect of government microblogs from the perspective of public behavior and online sentiment. It tries to break through traditional research that is limited to studying this problem only from the perspectives of microblog posts and publishers’ features. We also utilize a technical method based on text mining to measure the interest and sentiment of a user and how closely a government post matches those qualities. Using a dataset collected from the Sina microblog platform, along with statistical analysis and predictive modeling methods, the influences of different features on the microblog government dissemination effects are examined. We find that measuring public trust based on its sentiment orientation on the topic of government microblogs has bigger explanatory power and predictive capability than other methods.
|
Received: 27 November 2018
|
|
|
|
1 王学军, 王子琦. 政民互动、公共价值与政府绩效改进——基于北上广政务微博的实证分析[J]. 公共管理学报, 2017, 14(3): 31-43. 2 李倩倩, 姜景, 李瑛, 等. 我国政务微博转发规模分类预测[J]. 情报杂志, 2018, 37(1): 95-99. 3 刘宁雯. 中国政务微博研究文献综述[J]. 电子政务, 2012(6): 38-43. 4 BurtonS, SobolevaA. Interactive or reactive? marketing with Twitter[J]. Journal of Consumer Marketing, 2011, 28(7): 491-499. 5 MalhotraA. How to get your messages retweeted?[J]. MIT Sloan Management Review, 2012, 53(2): 61-66. 6 金永生, 王睿, 陈祥兵. 企业微博营销效果和粉丝数量的短期互动模型[J]. 管理科学, 2011, 24(4): 71-83. 7 张晶, 黄京华, 黎波, 等. 新浪企业微博口碑传播的实证研究[J]. 清华大学学报(自然科学版), 2014, 54(5): 649-654. 8 刘行军, 甘春梅, 王伟军. 基于U&G理论的微博信息传播影响因素实证分析[J]. 情报科学, 2016, 34(3): 139-144. 9 曹云忠, 邵培基, 朱文龙. 基于公共平台的企业微博信息传播意愿研究[J]. 信息系统学报, 2012, 6(2): 64-76. 10 SuhB, HongL C, PirolliP, et al. Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network[C]// Proceedings of the Second International Conference on Social Computing. New York: IEEE, 2010: 177-184. 11 赵蓉英, 曾宪琴. 微博信息传播的影响因素研究分析[J]. 情报理论与实践, 2014, 37(3): 58-63. 12 LiuZ, JansenB J. Questioner or question: Predicting the response rate in social question and answering on Sina Weibo[J]. Information Processing & Management, 2018, 54(2): 159-174. 13 田向国, 肖林鹏, 刘铁英, 等. 新浪微博信息传播路径阻碍因素分析及传播效果预测[J]. 情报科学, 2016, 34(5): 91-94. 14 柯赟. 新浪微博信息传播的影响因素分析与效果预测[J]. 现代情报, 2016, 36(3): 22-26. 15 丁学君, 梁昌勇. 基于传染病动力学的博客舆情话题传播模型研究[J]. 信息系统学报, 2016, 10(1): 63-76. 16 LiuQ, ZhouM, ZhaoX. Understanding News 2.0: A framework for explaining the number of comments from readers on online news[J]. Information & Management, 2015, 52(7): 764-776. 17 ShiL L, XieM. Research on the effect of diffusion of information for official microblog of local government in China[C]// Proceedings of the 8th International Conference on Public Administration, 2012: 770-777. 18 梁芷铭. 政务微博群的网络结构对传播效果的影响研究——政务微博话语权研究系列之十二[J]. 情报杂志, 2014, 33(11): 40-45. 19 刘晓娟, 王昊贤, 肖雪, 等. 基于微博特征的政务微博影响因素研究[J]. 情报杂志, 2013, 32(12): 35-41. 20 HaoX L, ZhengD Q, ZengQ F, et al. How to strengthen the social media interactivity of e-government[J]. Online Information Review, 2016, 40(1): 79-96. 21 黄膺旭, 曾润喜. 官员政务微博传播效果影响因素研究——基于意见领袖的个案分析[J]. 情报杂志, 2014, 33(9): 135-140. 22 陈娟, 刘燕平, 邓胜利. 政务微博辟谣信息传播效果的影响因素研究[J]. 情报科学, 2018, 36(1): 91-95, 117. 23 YangX, LiG X. Factors influencing the popularity of customer-generated content in a company-hosted online co-creation community: A social capital perspective[J]. Computers in Human Behavior, 2016, 64: 760-768. 24 YeQ, FangB, HeW, et al. Can social capital be transferred cross the boundary of the real and virtual worlds? An empirical investigation of Twitter[J]. Journal of Electronic Commerce Research, 2012, 13(2): 145-156. 25 罗雨宁, 胡广伟, 卢明欣. 政务微博影响力与粉丝特征关系研究[J]. 电子政务, 2017(12): 82-89. 26 NahapietJ, GhoshalS. Social capital, intellectual capital, and the organizational advantage[J]. Academy of Management Review, 1998, 23(2): 242-266. 27 VerplankenB, AartsH, KnippenbergA, et al. Habit versus planned behaviour: A field experiment[J]. British Journal of Social Psychology, 1998, 37(1): 111-128. 28 HeW, WeiK K. What drives continued knowledge sharing? An investigation of knowledge-contribution and -seeking beliefs[J]. Decision Support Systems, 2009, 46(4): 826-838. 29 KhansaL, MaX, LiginlalD, et al. Understanding members’ active participation in online question-and-answer communities: A theory and empirical analysis[J]. Journal of Management Information Systems, 2015, 32(2): 162-203. 30 ChiuC M, HsuM H, WangE T G. Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories[J]. Decision Support Systems, 2006, 42(3): 1872-1888. 31 KimJ, GambinoA. Do we trust the crowd or information system? Effects of personalization and bandwagon cues on users' attitudes and behavioral intentions toward a restaurant recommendation website[J]. Computers in Human Behavior, 2016, 65: 369-379. 32 ClemonsE K, WilsonJ, MattC, et al. Global differences in online shopping behavior: Understanding factors leading to trust[J]. Journal of Management Information Systems, 2016, 33(4): 1117-1148. 33 AlsharoM, GreggD, RamirezR. Virtual team effectiveness: The role of knowledge sharing and trust[J]. Information & Management, 2017, 54(4): 479-490. 34 谢恩, 黄缘缘, 赵锐. 不同维度信任相互作用及对在线购物意愿影响研究[J]. 管理科学, 2012, 25(2): 69-77. 35 ZavattaroS M, FrenchP E, MohantyS D. A sentiment analysis of US local government tweets: The connection between tone and citizen involvement[J]. Government Information Quarterly, 2015, 32(3): 333-341. 36 牛萍, 黄德根. TF-IDF与规则相结合的中文关键词自动抽取研究[J]. 小型微型计算机系统, 2016, 37(4): 7 11-715. 37 BleiD M, NgA Y, JordanM I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(4-5): 993-1022. 38 KarlssonA. Introduction to linear regression analysis[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2007, 170(3): 856-857. 39 McDonaldG C. Ridge regression[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, 1(1): 93-100. 40 TibshiraniR. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. 41 ChaiT, DraxlerR R. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247-1250. |
|
|
|