|
|
A Review of Query Suggestion |
Zhang Xiaojuan1, Peng Lin2, Li Qian3 |
1.School of Computer and Information Science, Southwest University, Chongqing 400715 2.National Science Library, Chinese Academy of Sciences, Beijing 100190 3.School of Economics and Management, Shanxi University, Taiyuan 030006 |
|
|
Abstract Query suggestion is an important technique for improving search efficiency, and its core task is to help users construct effective queries to accurately describe usersinformation requirements. As a core technology of search engines, query suggestion has attracted wide attention in both academia and industry and has long been considered to be an important research topic in information retrieval. This paper summarizes the recent research progress in query suggestion using papers published in China s and international conferences and journals. On this basis, the mainstream methods—simpleoccurrence information-based method, graph-based method, and integration of multiple information-based methods—are reviewed in detail in this paper. Then, the related evaluation methods and metrics are summarized and discussed. Finally, the possible future research directions are pointed out.
|
Received: 12 September 2018
|
|
|
|
1 李亚楠, 王斌, 李锦涛. 搜索引擎查询推荐技术综述[J]. 中文信息学报, 2010, 24(6): 75-84. 2 廖振. 基于查询点击核心图的查询推荐问题研究[D]. 天津: 南开大学, 2013. 3 CaiF, de RijkeM. A survey of query auto completion in information retrieval[J]. Foundations and Trends? in Information Retrieval, 2016, 10(4): 273-363. 4 DeerwesterS. Indexing by latent semantic indexing[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407. 5 JingY, CroftW B. An association thesaurus for information retrieval[C]// Proceedings of the Conference on Intelligent Text and Image Handling. New York: ACM Press, 1994: 146-160. 6 XuJ, CroftW B. Query expansion using local and global document analysis[C]// Proceedings of the 19th ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1996: 4-11. 7 PlansangketS. New weighting schemes for document ranking and ranked query suggestion[M]. University of Essex, 2017. 8 NogueiraR, ChoK. Task-oriented query reformulation with reinforcement learning[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Strodsburg: Association for Computational Linguistics, 2017: 574-583. 9 SinghV, GargS, KaurP. Efficient algorithm for web search query reformulation using genetic algorithm[C]// Proceedings of the Conference on Computational Intelligence in Data Mining—Volume 1, Advances in Intelligent Systems and Computing. New Delhi: Springer, 2016, 410: 459-470. 10 JonesR, ReyB, MadaniO, et al. Generating query substitutions[C]// Proceedings of the 15th International Conference on World Wide Web. New York: ACM Press, 2006: 387-396. 11 ShiX, YangC C. Mining related queries from Web search engine query logs using an improved association rule mining model[J]. Journal of the American Society for Information Science and Technology, 2007, 58(12): 1871-1883. 12 FonsecaB M, GolgherP B, De MouraE S, et al. Discovering search engine related queries using association rules[J]. Journal of Web Engineering, 2003, 2(4): 215-227. 13 HuangC K, ChienL F, OyangY J. Relevant term suggestion in interactive web search based on contextual information in query session logs[J]. Journal of the Association for Information Science and Technology, 2003, 54(7): 638-649. 14 BoldiP, BonchiF, CastilloC, et al. The query-flow graph: model and applications[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 609-618. 15 BoldiP, BonchiF, CastilloC, et al. Query suggestions using query-flow graphs[C]// Proceedings of the 2009 Workshop on Web Search Click Data. New York: ACM Press, 2009: 56-63. 16 WangX, ZhaiC X. Mining term association patterns from search logs for effective query reformulation[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 479-488. 17 SzpektorI, GionisA, MaarekY. Improving recommendation for long-tail queries via templates[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 47-56. 18 AnagnostopoulosA, BecchettiL, CastilloC, et al. An optimization framework for query recommendation[C]// Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010: 161-170. 19 BaragliaR, NardiniF M, CastilloC, et al. The effects of time on query flow graph-based models for query suggestion[C]// Proceedings of Adaptivity, Personalization and Fusion of Heterogeneous Information. New York: ACM Press, 2010: 182-189. 20 BaragliaR, CastilloC, DonatoD, et al. Aging effects on query flow graphs for query suggestion[C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2009: 1947-1950. 21 李亚楠, 许晟, 王斌. 基于加权SimRank的中文查询推荐研究[J]. 中文信息学报, 2010, 24(3): 3-10. 22 朱小飞, 郭嘉丰, 程学旗, 等. 基于吸收态随机行走的两阶段效用性查询推荐方法[J]. 计算机研究与发展, 2013, 50(12): 2603-2611. 23 李竞飞, 商振国, 张鹏, 等. 融合用户实时搜索状态的自适应查询推荐模型[J]. 计算机科学与探索, 2016, 10(9): 1290-1298. 24 罗成, 刘奕群, 张敏, 等. 基于用户意图识别的查询推荐研究[J]. 中文信息学报, 2014, 28(1): 64-72. 25 MeiQ Z, ZhouD Y, ChurchK. Query suggestion using hitting time[C]// Proceedings of 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 469-478. 26 CraswellN, SzummerM. Random walks on the click graph[C]// Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2007: 23-27. 27 MaH, YangH X, KingI, et al. Learning latent semantic relations from click through data for query suggestion[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 709-718. 28 LiuY, SongR H, ChenY, et al. Adaptive query suggestion for difficult queries[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 15-24. 29 LiL, YangZ L, LiuL, et al. Query-URL bipartite based approach to personalized query recommendation[C]// Proceedings of the 23rd National Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2008: 1189-1194. 30 DengH B, KingI, LyuM R. Entropy-biased models for query representation on the click graph[C]// Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 339-346. 31 BeefermanD, BergerA. Agglomerative clustering of a search engine query log[C]// Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2000: 407-416. 32 Baeza-YatesR, HurtadoC, MendozaM. Query recommendation using query logs in search engines[C]// Proceedings of International Conference on Extending Database Technology. Heidelberg: Springer, 2004: 588-596. 33 吴家丽. 基于用户意图识别的查询重构研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. 34 JiangD, LeungK W T, VoseckyJ, et al. Personalized Query Suggestion with Diversity Awareness[C]// Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE, 2014: 400-411. 35 张乃洲. 基于时间点击图挖掘的查询建议方法[J]. 计算机工程, 2015, 41(5): 191-196. 36 SongY, HeL W. Optimal rare query suggestion with implicit user feedback[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2010: 901-910. 37 SejalD, ShaileshK G, TejaswiV, et al. Query click and text similarity graph for query suggestions[M]// Machine Learning and Data Mining in Pattern Recognition. Heidelberg: Springer, 2015: 328-341. 38 YeF Y, SunJ. Combining query ambiguity and query-URL strength for log-based query suggestion[C]// Proceedings of International Conference on Swarm Intelligence. Heidelberg: Springer, 2016: 590-597. 39 CaoH H, JiangD X, PeiJ, et al. Context-aware query suggestion by mining click-through and session data[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 875-883. 40 SordoniA, BengioY, VahabiH, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2015: 553-562. 41 DehghaniM, RotheS, AlfonsecaE, et al. Learning to attend, copy, and generate for session-based query suggestion[C]// Proceedings of the 26th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2017: 1747-1756. 42 JiangJ Y, WangW. RIN: Reformulation Inference Network for context-aware query suggestion[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 197-206. 43 LiuY Q, MiaoJ W, ZhangM, et al. How do users describe their information need: Query recommendation based on snippet click model[J]. Expert Systems with Applications, 2011, 38(11): 13847-13856. 44 石雁, 李朝锋. 基于朴素贝叶斯点击预测的查询推荐方法[J]. 计算机应用与软件, 2016, 33(10): 19-23. 45 GuoJ F, ZhuX F, LanY Y, et al. Modeling users’ search sessions for high utility query recommendation[J]. Information Retrieval Journal, 2017, 20(1): 4-24. 46 QiS Y, WuD M, MamoulisN. Location aware keyword query suggestion based on document proximity[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 82-97. 47 LuccheseC, OrlandoS, PeregoR, et al. Identifying task-based sessions in search engine query logs[C]// Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2011: 277-286. 48 LiaoZ, SongY, HeL W, et al. Evaluating the effectiveness of search task trails[C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM Press, 2012: 489-498. 49 FeildH, AllanJ. Task-aware query recommendation[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 83-92. 50 OzertemU, ChapelleO, DonmezP, et al. Learning to suggest: a machine learning framework for ranking query suggestions[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 25-34. 51 GoelS, BroderA, GabrilovichE, et al. Anatomy of the long tail: ordinary people with extraordinary tastes[C]// Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010: 201-210. 52 SantosR L T, MacdonaldC, OunisI. Learning to rank query suggestions for adhoc and diversity search[J]. Information Retrieval, 2013, 16(4): 429-451. 53 GarigliottiD, BalogK. Generating query suggestions to support task-based search[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 1153-1156. 54 LiuJ W, LiQ S, LinY S, et al. A query suggestion method based on random walk and topic concepts[C]// Proceedings of IEEE/ACIS 16th International Conference on Computer and Information Science. IEEE, 2017: 251-256. 55 HuangZ P, CautisB, ChengR, et al. KB-enabled query recommendation for long-tail queries[C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2016: 2107-2112. 56 HuangZ P, CautisB, ChengR, et al. Entity-based query recommendation for long-tail Queries[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(6): Article No. 64. 57 BonchiF, PeregoR, SilvestriF, et al. Recommendations for the long tail by term-query graph[C]// Proceedings of the 20th International Conference Companion on World Wide Web. New York: ACM Press, 2011: 15-16. 58 白露, 郭嘉丰, 曹雷, 等. 基于查询意图的长尾查询推荐[J]. 计算机学报, 2013, 36(3): 636-642. 59 刘钰锋, 李仁发. 基于Term-Query-URL异构信息网络的查询推荐[J]. 湖南大学学报(自然科学版), 2014, 41(5): 106-112. 60 ChenY, ZhangY Q. A personalised query suggestion agent based on query-concept bipartite graphs and Concept Relation Trees[J]. International Journal of Advanced Intelligence Paradigms, 2009, 1(4): 398-417. 61 BingL D, LamW, WongT L, et al. Web query reformulation via joint modeling of latent topic dependency and term context[J]. ACM Transactions on Information Systems, 2015, 33(2): Article No. 6. 62 ChenW Y, CaiF, ChenH H, et al. Personalized query suggestion diversification[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 817-820. 63 张晓娟. 利用嵌入方法实现个性化查询重构[J]. 情报学报, 2018, 37(6): 621-630. 64 ChenW Y, HaoZ P, ShaoT H, et al. Personalized query suggestion based on user behavior[J]. International Journal of Modern Physics C, 2018, 29(4): 1850036. 65 王卫国, 徐炜民. 基于潜在语义分析的个性化查询扩展模型[J]. 计算机工程, 2010, 36(21): 43-45. 66 石雁, 李朝锋. 基于协同相似计算的查询推荐[J]. 计算机工程, 2016, 42(8): 188-193. 67 孙达明, 张斌, 张书波, 等. 面向差异化搜索背景的查询推荐方法[J]. 计算机工程, 2016, 42(11): 202-206. 68 DouZ C, SongR H, WenJ R. A large-scale evaluation and analysis of personalized search strategies[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007: 581-590. 69 CaiF, de RijkeM. Selectively personalizing query auto-completion[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2016: 993-996. 70 MaH, LyuM R, KingI. Diversifying query suggestion results[C]// Proceedings of the 24th AAAI Coneference on Artificial Intelligence. Palo Alto: AAAI Press, 2010: 1399-1404. 71 BordinoI, CastilloC, DonatoD, et al. Query similarity by projecting the query-flow graph[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2010: 515-522. 72 SongY, ZhouD Y, HeL W. Post-ranking query suggestion by diversifying search results[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 815-824. 73 ZhuX F, GuoJ F, ChengX Q, et al. A unified framework for recommending diverse and relevant queries[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 37-46. 74 HuH, ZhangM X, HeZ Y, et al. Diversifying query suggestions by using topics from Wikipedia[C]// Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies. Washington, DC: IEEE Computer Society, 2013: 139-146. 75 DingH, ZhangS, GarigliottiD, et al. Generating high-quality query suggestion candidates for task-based search[C]// Proceedings of the 40th European Conference on Information Retrieval. Heidelberg: Springer, 2018: 625-631. 76 KimY, CroftW B. Diversifying query suggestions based on query documents[C]// Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2014: 891-894. 77 ZhengH T, ZhaoJ, ZhangY C, et al. An ontology-based approach to query suggestion diversification[C]// Proceedings of the International Conference on Neural Information Processing. Heidelberg: Springer, 2014: 437-444. 78 任鹏杰, 陈竹敏, 马军, 等. 一种综合语义和时效性意图的检索结果多样化方法[J]. 计算机学报, 2015, 38(10): 2076-2091. 79 GuptaD, BerberichK. Diversifying search results using time[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2016: 789-795. 80 NguyenT N, KanhabuaN. Leveraging dynamic query subtopics for time-aware search result diversification[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2014: 222-234. 81 ZhangX J, PengL. Time-aware diversified query suggestion[C]// Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. New York: ACM Press, 2018: 399-400. 82 朱小飞, 郭嘉丰, 程学旗, 等. 基于流形排序的查询推荐方法[J]. 中文信息学报, 2011, 25(2): 38-44. 83 JainA, OzertemU, VelipasaogluE. Synthesizing high utility suggestions for rare web search queries[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 805-814. 84 BhatiaS, MajumdarD, MitraP. Query suggestions in the absence of query logs[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 795-804. 85 MaZ R, ChenY, SongR H, et al. New assessment criteria for query suggestion[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 1109-1110. 86 YanX H, GuoJ F, ChengX Q. Context-aware query recommendation by learning high-order relation in query logs[C]// Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2011: 2073-2076. 87 SongY, ZhouD Y, HeL W. Query suggestion by constructing term-transition graphs[C]// Proceedings of the Fifth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2012: 353-362. 88 ChenW Y, CaiF, ChenH H, et al. Attention-based hierarchical neural query suggestion[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2018: 1093-1096. 89 NallapatiR, ShahC. Evaluating the quality of query refinement suggestions in information retrieval[EB/OL]. [2018-09-01]. http: //maroo. cs. umass. edu/getpdf. php?id=663. 90 MiyanishiT, SakaiT. Time-aware structured query suggestion[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 809-812. |
|
|
|