|
|
Research on Identification of Emerging Topics Based on Link Prediction with Weighted Networks |
Huang Lu1, Zhu Yihe1, Zhang Yi2 |
1.School of Management and Economics, Beijing Institute of Technology, Beijing 100081 2.Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology, Sydney 2007 |
|
|
Abstract The acceleration of the new generation of technological revolution and industrial transformation stimulates the recognition of emerging technologies, which has become a crucial issue related to the future developmental strategy of a country and region. We initially predict the dynamic change of a co-word network based on link prediction and neural network algorithms. Emerging topics are then detected by measuring their novelty and influence. An empirical study on applications of perovskite materials is conducted to demonstrate the reliability of the proposed method.
|
Received: 08 October 2018
|
|
|
|
1 RotoloD, HicksD, MartinB R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 2 KajikawaY, TakedaY. Structure of research on biomass and bio-fuels: A citation-based approach[J]. Technological Forecasting and Social Change, 2008, 75(9): 1349-1359. 3 ShibataN, KajikawaY, TakedaY, et al. Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications[J]. Technological Forecasting and Social Change, 2011, 78(2): 274-282. 4 YoonJ, ChoiS, KimK. Invention property-function network analysis of patents: A case of silicon-based thin film solar cells[J]. Scientometrics, 2011, 86(3): 687-703. 5 SmallH. Tracking and predicting growth areas in science[J]. Scientometrics, 2006, 68(3): 595-610. 6 LeeW H. How to identify emerging research fields using scientometrics: An example in the field of Information Security[J]. Scientometrics, 2008, 76(3): 503-525. 7 LüL, ZhouT. Link prediction in complex networks: A survey[J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(6): 1150-1170. 8 LibenNowellD, KleinbergJ. The link-prediction problem for social networks[J]. Journal of the Association for Information Science and Technology, 2007, 58(7): 1019-1031. 9 GunsR, RousseauR. Recommending research collaborations using link prediction and random forest classifiers[J]. Scientometrics, 2014, 101(2): 1461-1473. 10 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 11 宫雪, 崔雷. 基于医学主题词共现网络的链接预测研究[J]. 情报杂志, 2018, 37(1): 66-71, 52. 12 ShibataN, KajikawaY, SakataI. Link prediction in citation networks[J]. Journal of the American Society for Information Science and Technology, 2012, 63(1): 78-85. 13 ZhangY, PorterA L, HuZ, et al. “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells[J]. Technological Forecasting and Social Change, 2014, 85: 26-39. 14 滕立, 沈君, 高继平. 词知识网络中的认知结构: 理论、方法与实证[J]. 情报学报, 2013, 32(9): 976-989. 15 ZhouT, LüL, ZhangY C. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630. 16 潘庆先, 董红斌, 韩启龙, 等. 一种基于BP神经网络的属性重要性计算方法[J]. 中国科学技术大学学报, 2017, 47(1): 18-25. 17 LüL, ZhouT. Link prediction in weighted networks: The role of weak ties[J]. Europhysics Letters, 2010, 89(1): 18001. 18 JehG, WidomJ. SimRank: A measure of structural-context similarity[C]// Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002: 538-543. 19 KimJ, MageeC L. Dynamic patterns of knowledge flows across technological domains: Empirical results and link prediction[OL]. https://arxiv.org/ftp/arxiv/papers/1706/1706.07140.pdf. 20 MarianiM S, MedoM, ZhangY C. Identification of milestone papers through time-balanced network centrality[J]. Journal of Informetrics, 2016, 10(4): 1207-1223. 21 赵雨, 李惠, 关雷雷, 等. 钙钛矿太阳能电池技术发展历史与现状[J]. 材料导报, 2015, 29(11): 17-21. 22 GreenM A, Ho-BaillieA, SnaithH J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. 23 WangY, LvZ, LiaoQ. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching[J]. Advanced Materials, 2018, 30(28): 1800327. 24 FengJ, ZhuX, YangZ. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy[J]. Advanced Materials, 2018, 30(35): e1801418. 25 ZhangQ, SuR, DuW N, et al. Advances in small perovskite-based lasers[J]. Small Methods, 2017, 1(9): 1700163. |
|
|
|