|
|
Design and Construction of City Network Image Monitoring System |
Chen Jinghao1, Zeng Zhen2, Li Gang3 |
1.School of Public Policy and Management, Guangxi University, Nanning 530004 2.School of Information, Guizhou University of Finance and Economics, Guiyang 550025 3.Center for the Studies of Information Resources of Wuhan University, Wuhan 430072 |
|
|
Abstract The assessment of a city s network image through the analysis of a large amount of network information can help city managers find urban governance shortcomings and actively shape the city s image. First, this article reviews the research status of urban network image monitoring nationally and abroad. Consequently, a system design concept and framework are proposed. Subsequently, the key technology and core function implementation process of the system are elaborated. Finally, a system application example is provided. The city network image monitoring system constructed in this paper can accurately assess the city network image, help the government identify problems in city governance, and provide decision support for shaping the city s brand.
|
Received: 14 September 2018
|
|
|
|
1 刘易斯·芒福德. 城市发展史: 起源、演变和前景[M]. 北京: 中国建筑工业出版社, 2005: 75. 2 BanyaiM, GloverT D. Evaluating research methods on travel blogs[J]. Journal of Travel Research, 2012, 51(3): 267-277. 3 Marine-RoigE, ClavéS A. A detailed method for destination image analysis using user-generated content[J]. Information Technology & Tourism, 2016, 15(4): 341-364. 4 K?ltringerC, DickingerA. Analyzing destination branding and image from online sources: A web content mining approach[J]. Journal of Business Research, 2015, 68(9): 1836-1843. 5 GrandiR, NeriF. Sentiment analysis and city branding[M]// New Trends in Databases and Information Systems. Heidelberg: Springer, 2014: 339-349. 6 WongC U I, QiS. Tracking the evolution of a destination s image by text-mining online reviews-the case of Macau[J]. Tourism Management Perspectives, 2017, 23: 19-29. 7 Villena-RománJ, CobosA L, CristóbalJ C G. TweetAlert: Semantic analytics in social networks for citizen opinion mining in the city of the future[C]// UMAP Workshops, 2014. 8 YanW, SunJ H. Research and development of city image media monitoring system[C]// Proceedings of the International Conference on Management and Service Science. Los Alamitos: IEEE Computer Society Press, 2009: 1-4. 9 LiG, ChenJ. Study on the city image network monitoring system based on opinion-mining[C]// Proceedings of the 2nd International Conference on Networking and Digital Society. Los Alamitos: IEEE Computer Society Press, 2010, 2: 134-138. 10 WeilerA, GrossniklausM, SchollM H. Situation monitoring of urban areas using social media data streams[J]. Information Systems, 2016, 57: 129-141. 11 Armonk. IBM helps cities worldwide measure public social sentiment on critical issues[EB/OL]. IBM News Room. (2012-09-13) [2018-05-30]. https://www-03.ibm.com/press/us/en/pressrelease/38816.wss. 12 瑞意趋势·政企形象监测. 大数据整合与挖掘[EB/OL]. (2018-05-29) [2018-05-30]. http://www.trends-china.com/cityimagemonitoring.html. 13 BenedettoF, TedeschiA. Big data sentiment analysis for brand monitoring in social media streams by cloud computing[M]// Sentiment Analysis and Ontology Engineering. Heidelberg: Springer, 2016: 341-377. 14 AbburuS, BabuG S. A frame work for web information extraction and analysis[J]. International Journal of Computers & Technology, 2013, 7(2): 574-579. 15 SchmunkS, H?pkenW, FuchsM, et al. Sentiment analysis: Extracting decision-relevant knowledge from UGC[M]// Information and Communication Technologies in Tourism 2014. Heidelberg: Springer, 2013: 253-265. 16 LaiL S L, ToW M. Content analysis of social media: A grounded theory approach[J]. Journal of Electronic Commerce Research, 2015, 16(2): 138. 17 MikolovT, ChenK, CorradoG, et al. Efficient estimation of word representations in vector space[OL]. https://arxiv.org/pdf/1301.3781.pdf. 18 陈鑫. 基于行块分布函数的通用网页正文抽取[EB/OL]. (2010-11-15) [2018-06-11]. https://wenku.baidu.com/view/2b5c9793d-aef5ef7ba0d3cb5.html. 19 MankuG S, JainA, Das SarmaA. Detecting near-duplicates for web crawling[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007: 141-150. 20 CheW X, LiZ H, LiuT. LTP: A Chinese language technology platform[C]// Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. Stroudsburg: Association for Computational Linguistics, 2010: 13-16. 21 HowNet[EB/OL]. (2018-06-14) [2018-06-15]. http://www.keenage.com/. 22 台湾大学自然语言处理实验室. NTUSD[EB/OL]. (2018-06-14) [2018-06-15]. http://nlg.csie.ntu.edu.tw/. 23 徐琳宏, 林鸿飞, 潘宇, 等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185. 24 陈晓东. 基于情感词典的中文微博情感倾向分析研究[D]. 武汉: 华中科技大学, 2012: 31. 25 韩忠明, 张玉沙, 张慧, 等. 有效的中文微博短文本倾向性分类算法[J]. 计算机应用与软件, 2012, 29(10): 89-93. |
|
|
|