|
|
Explainable Real-Time Book Information Recommendation Model |
Yu Yisheng1, Wei Rui2, Liu Xinyan1 |
1. Department of Economics and Management, South China Normal University, Guangzhou 510000 2. Guangzhou CEPREI Tengrui Information Technology Co. Ltd, Guangzhou 510000 |
|
|
Abstract This study creates a baseline that considers the book and user simultaneously to improve explainability and precision and to maintain good real-time performance. Furthermore, we research it through comparative analysis and offline research, which prove that the bas-ICF algorithm performs better in reasonability and richness of the recommended reason. bas-ICF also performs better in terms of precision and maintains good real-time performance.
|
Received: 04 July 2018
|
|
|
|
[1] 赵蓉英, 余波. 国际数据挖掘研究热点与前沿可视化分析[J]. 现代情报, 2018, 38(6): 128-137. [2] Tintarev N, Masthoff J. A survey of explanations in recommender systems[C]// Proceedings of the 23rd International Conference on Data Engineering Workshop. IEEE, 2007: 801-810. [3] Tintarev N, Masthoff J. Designing and evaluating explanations for recommender systems[M]// Recommender Systems Handbook. Springer, 2011: 479-510. [4] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM Press, 2016: 7-10. [5] He X N, Liao L Z, Zhang H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017: 173-182. [6] Shan Y, Hoens T R, Jiao J, et al. Deep crossing: Web-scale mod?eling without manually crafted combinatorial features[C]// Pro?ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 255-262. [7] Gong Y Y, Zhang Q. Hashtag recommendation using attention-based convolutional neural network[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli?gence. Palo Alto: AAAI Press, 2016: 2782-2788. [8] Kim D, Park C, Oh J, et al. Convolutional matrix factorization for document context-aware recommendation[C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM Press, 2016: 233-240. [9] Sohail S S, Siddiqui J, Ali R. Book recommendation system using opinion mining technique[J]. Proceedings of the IEEE, 2013: 1609-1614. [10] 王晓耘, 赵菁, 徐作宁. 基于社会化标注的用户兴趣发现及个性化推荐研究[J]. 现代情报, 2018, 38(7): 67-73, 80. [11] 汤妙吉. 面向个性化信息服务的图书馆移动用户行为分析模型设计[J]. 现代情报, 2018, 38(1): 121-126. [12] Bilgic M, Mooney R J. Explaining recommendations: Satisfaction vs. promotion[C]// Beyond Personalization 2005: A Workshop on the Next Stage of Recommender Systems Research at the 2005 International Conference on Intelligent User Interfaces. 2005: 13-18. [13] Herlocker J L, Konstan J A, Riedl J. Explaining collaborative filtering recommendations[C]// Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 2000: 241-250. [14] O’Donovan J, Smyth B. Trust in recommender systems[C]// Proceedings of the 10th International Conference on Intelligent User Interfaces. New York: ACM Press, 2005: 167-174. [15] Mooney R J, Roy L. Content-based book recommending using learning for text categorization[C]// Proceedings of the Fifth ACM Conference on Digital Libraries. New York: ACM Press, 2000: 195-204. [16] Yu C, Lakshmanan L V S, Ameryahia S. Recommendation diversification using explanations[C]// Proceedings of IEEE International Conference on Data Engineering. IEEE Computer Society, 2009: 1299-1302. [17] Kuroiwa T, Bhalla S. Dynamic personalization for book recom?mendation system using Web services and virtual library enh?ancements[C]// Proceedings of IEEE International Conference on Computer and Information Technology. IEEE, 2007: 212-217. [18] Deshpande M, Karypis G. Item-based top-n recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177. [19] 张永锋. 个性化推荐的可解释性研究[D]. 北京: 清华大学, 2016. [20] Zhang Y, Lai G, Zhang M, et al. Explicit factor models for ex?plainable recommendation based on phrase-level sentiment analysis[C]// Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM Press, 2014: 83-92. [21] 王晓腾. 考虑评论的矩阵分解推荐算法研究[D]. 成都: 电子科技大学, 2018. [22] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012: 59-62. [23] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. [24] Phelan O, McCarthy K, Smyth B. Using twitter to recommend real-time topical news[C]// Proceedings of the Third ACM Con?ference on Recommender Systems. New York: ACM Press, 2009: 385-388. [25] [Song Y, Zhuang Z, Li H, et al. Real-time automatic tag recommendation[C]// Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2008: 515-522. [26] Si X, Sun M. Tag-LDA for scalable real-time tag recommenda?tion[J]. Journal of Information and Computational Science, 2009, 6(2): 1009-1016. [27] Diaz-Aviles E, Drumond L, Schmidt-Thieme L, et al. Real-time top-n recommendation in social streams[C]// Proceedings of the Sixth ACM Conference on Recommender Systems. New York: ACM Press, 2012: 59-66. [28] 黄训蓬. 增量矩阵分解中线性特征变换的研究与应用[D]. 合肥: 中国科学技术大学, 2018. [29] Abbar S, Amer-Yahia S, Indyk P, et al. Real-time recommenda?tion of diverse related articles[C]// Proceedings of the 22nd In?ternational Conference on World Wide Web. New York: ACM Press, 2013: 1-12. [30] 雷震. 基于聚类的个性化推荐算法研究[D]. 成都: 电子科技大学, 2013. [31] 徐键. 协同过滤中数据稀疏问题与推荐实时性的研究[D]. 兰州: 兰州大学, 2016. [32] Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 426-434. [33] Salakhutdinov R, Mnih A. Probabilistic matrix factorization[C]// Proceedings of the International Conference on Neural Information Processing Systems. Curran Associates Inc., 2007: 1257- 1264. [34] Ma H. An experimental study on implicit social recommenda?tion[C]// Proceedings of the 36th International ACM SIGIR Con?ference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 73-82. [35] Li F F, Xu G D, Cao L B. Coupled item-based matrix factoriza?tion[C]// Proceedings of the International Conference on Web In?formation Systems Engineering. Cham: Springer, 2014, 8786: 1-14. [36] Li S, Kawale J, Fu Y. Deep collaborative filtering via marginal?ized denoising auto-encoder[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 811-820. |
|
|
|