Research on n-Ary Technology Opportunity Discovery Based on Hyperlink Prediction
Chen Wenjie1,2, Qu Jiansheng1,2
1.National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu 610299 2.Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190
摘要对特定领域的技术机会进行挖掘与分析,可以为企业“从0到1”的原始创新提供新参考和新建议。本文提出了一种基于超链路预测的多元技术机会发现方法。首先,基于技术间多元共现关系构建技术关系超网络,利用IPC(international patent classification)的引用信息和文本信息生成节点特征向量;其次,将超链路预测模型Hyper-SAGNN(a self-attention based graph neural network for hypergraphs)扩展到技术关系超网络中,预测未来多个技术融合形成技术机会的可能性;最后,基于新颖性、中心性、跨领域性等特征构建度量指标,发现潜在的、有价值的多元技术机会。以智能问答技术领域为例,验证了本文方法的科学性和有效性,有效挖掘出高价值的三元技术机会和四元技术机会,为企业的技术战略布局与创新策略提供了决策支持。
1 任海英, 王倩. 技术机会发现方法的研究现状、趋势和问题[J]. 情报杂志, 2020, 39(4): 51-59. 2 Porter A L, Detampel M J. Technology opportunities analysis[J]. Technological Forecasting and Social Change, 1995, 49(3): 237-255. 3 宋凯, 冉从敬. 基于主题挖掘与专利评估的技术机会识别研究——以智慧农业为例[J]. 图书情报工作, 2023, 67(3): 61-71. 4 冯立杰, 秦浩, 张珂, 等. 基于离群专利和多维技术创新地图的技术机会识别路径研究[J]. 情报理论与实践, 2023, 46(9): 79-86. 5 周钟, 班燚. 基于GTM逆向映射和SD建模的潜在技术机会识别与评价[J]. 情报理论与实践, 2023, 46(10): 107-114, 95. 6 王金凤, 陈慧源, 刘振锋, 等. 基于生成式拓扑映射和类比设计方法的技术机会识别[J]. 情报理论与实践, 2023, 46(6): 127-135. 7 李子彪, 孙可远, 陈迪, 等. 基于科技差距评估GTM专利地图识别的技术机会[J]. 情报杂志, 2023, 42(7): 147-153, 44. 8 黄鲁成, 王静静, 李欣, 等. 基于论文和专利的钙钛矿太阳能电池的技术机会分析[J]. 情报学报, 2016, 35(7): 686-695. 9 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 10 李慧, 庞经纬, 孟玮. 基于专利知识流网络和图表示学习的技术机会链路预测研究[J]. 情报理论与实践, 2023, 46(7): 107-114, 149. 11 刘娜, 陆高潮, 毛荐其, 等. 基于多源数据和改进链路预测的新能源汽车技术机会研究[J]. 情报杂志, 2024, 43(3): 92-98. 12 周洪, 魏凤, 王辉. 基于高阶网络的三元技术融合过程和预测研究[J]. 情报理论与实践, 2023, 46(12): 149-156, 182. 13 马涛, 索琪. 基于超图的超网络研究综述[J]. 运筹与管理, 2021, 30(2): 232-239. 14 张金柱, 李溢峰. 专利分类序列和文本语义表示视角下的技术融合预测研究[J]. 情报学报, 2022, 41(6): 609-624. 15 Le Q V, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. JMLR.org, 2014: 2931-2939.. 16 Zhang R C, Zou Y S, Ma J. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs[OL]. (2019-11-06). https://arxiv.org/pdf/1911.02613. 17 慎金花, 闫倩倩, 孙乔宣, 等. 基于专利数据挖掘的技术融合识别与技术机会预测研究——以电动汽车产业为例[J]. 图书馆杂志, 2019, 38(10): 95-106. 18 Zhang L H, Zhang Z Q. Detection of early-stage research fronts—an example of complex networks research[J]. Chinese Journal of Library and Information Science, 2014(4): 77-94. 19 Caviggioli F. Technology fusion: Identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016, 55: 22-32. 20 van der Maaten L, Hinton G E. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579-2605. 21 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 22 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 23 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[OL]. (2017-02-22). https://arxiv.org/pdf/1609.02907. 24 Veli?kovi? P, Cucurull G, Casanova A, et al. Graph attention networks[OL]. (2018-02-04). https://arxiv.org/pdf/1710.10903. 25 Iannelli, M, Kuchipudi S, Dvorak V. SLA management in reconfigurable multi-agent RAG: a systems approach to question answering[OL]. (2025-04-28). https://arxiv.org/pdf/2412.06832. 26 Sagar Srinivas S, Das A, Gupta S, et al. Accelerating manufacturing scale-up from material discovery using agentic web navigation and retrieval-augmented AI for process engineering schematics design[OL]. (2024-12-08). https://arxiv.org/pdf/2412.05937.