1 Song K, Kim K S, Lee S. Discovering new technology opportunities based on patents: text-mining and F-term analysis[J]. Technovation, 2017, 60/61: 1-14. 2 Ma T T, Zhou X, Liu J, et al. Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies[J]. Technological Forecasting and Social Change, 2021, 173: 121159. 3 任海英, 王倩. 技术机会发现方法的研究现状、趋势和问题[J]. 情报杂志, 2020, 39(4): 51-59. 4 伊惠芳, 刘细文, 龙艺璇. 技术创新全视角下技术机会发现研究进展[J]. 图书情报工作, 2021, 65(7): 132-142. 5 苏娜平, 谭宗颖. 技术机会分析方法研究综述与展望[J]. 情报理论与实践, 2020, 43(11): 179-186. 6 Lee C Y. A review of data analytics in technological forecasting[J]. Technological Forecasting and Social Change, 2021, 166: 120646. 7 李慧, 孟玮. 专利视角下的美国空军核心技术演化分析[J]. 情报理论与实践, 2021, 44(2): 41-49. 8 Yoon B, Park Y. A text-mining-based patent network: analytical tool for high-technology trend[J]. The Journal of High Technology Management Research, 2004, 15(1): 37-50. 9 Kim M, Park Y, Yoon J. Generating patent development maps for technology monitoring using semantic patent-topic analysis[J]. Computers & Industrial Engineering, 2016, 98: 289-299. 10 吴菲菲, 陈肖微, 黄鲁成, 等. 基于语义相似度的技术多主题演化路径识别方法研究[J]. 情报杂志, 2018, 37(5): 91-96. 11 Lee C Y, Jeon D, Ahn J M, et al. Navigating a product landscape for technology opportunity analysis: a word2vec approach using an integrated patent-product database[J]. Technovation, 2020, 96/97: 102140. 12 饶齐, 王裴岩, 张桂平. 面向中文专利SAO结构抽取的文本特征比较研究[J]. 北京大学学报(自然科学版), 2015, 51(2): 349-356. 13 Hu J, Li S B, Yao Y, et al. Patent keyword extraction algorithm based on distributed representation for patent classification[J]. Entropy, 2018, 20(2): 104. 14 Kim T S, Sohn S Y. Machine-learning-based deep semantic analysis approach for forecasting new technology convergence[J]. Technological Forecasting and Social Change, 2020, 157: 120095. 15 Korobkin D, Fomenkov S, Kravets A, et al. Methods of statistical and semantic patent analysis[C]// Proceedings of the Conference on Creativity in Intelligent Technologies and Data Science. Cham: Springer, 2017: 48-61. 16 Chen L, Xu S, Zhu L J, et al. A deep learning based method for extracting semantic information from patent documents[J]. Scientometrics, 2020, 125(1): 289-312. 17 王秀红, 高敏. 基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J]. 图书情报工作, 2021, 65(22): 114-125. 18 赵京胜, 宋梦雪, 高祥, 等. 自然语言处理中的文本表示研究[J]. 软件学报, 2022, 33(1): 102-128. 19 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781.pdf. 20 Le Q, Mikolov T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on International Conference on Machine Learning. JMLR.org, 2014: II-1188-II-1196. 21 Pennington J, Socher R, Manning C. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543. 22 Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 4171-4186. 23 Zhu C, Motohashi K. Identifying the technology convergence using patent text information: a graph convolutional networks (GCN)-based approach[J]. Technological Forecasting and Social Change, 2022, 176: 121477. 24 Kim S, Park I, Yoon B. SAO2vec: development of an algorithm for embedding the subject-action-object (SAO) structure using doc2vec[J]. PLoS One, 2020, 15(2): e0227930. 25 Krestel R, Chikkamath R, Hewel C, et al. A survey on deep learning for patent analysis[J]. World Patent Information, 2021, 65: 102035. 26 林原, 张乐, 丁堃, 等. 融合专利表示的技术路线图构建研究[J]. 情报杂志, 2021, 40(10): 15-20. 27 马建红, 姬帅, 刘硕. 面向专利的主题短语提取[J]. 计算机工程与设计, 2019, 40(5): 1365-1369, 1382. 28 Kim K, Park K, Lee S. Investigating technology opportunities: the use of SAOx analysis[J]. Scientometrics, 2019, 118(1): 45-70. 29 陈泽龙. 基于句法表征的专利文本相似性评估[D]. 北京: 北京交通大学, 2019: 14-18. 30 Arts S, Cassiman B, Gomez J C. Text matching to measure patent similarity[J]. Strategic Management Journal, 2018, 39(1): 62-84. 31 刘俊婉, 龙志昕, 王菲菲. 基于LDA主题模型与链路预测的新兴主题关联机会发现研究[J]. 数据分析与知识发现, 2019, 3(1): 104-117. 32 席笑文, 郭颖, 宋欣娜, 等. 基于word2vec与LDA主题模型的技术相似性可视化研究[J]. 情报学报, 2021, 40(9): 974-983. 33 Zhang H, Daim T, Zhang Y Q. Integrating patent analysis into technology roadmapping: a latent Dirichlet allocation based technology assessment and roadmapping in the field of Blockchain[J]. Technological Forecasting and Social Change, 2021, 167: 120729. 34 马建红, 张少光, 曹文斌, 等. 面向功能信息的相似专利动态聚类混合模型[J]. 计算机应用与软件, 2021, 38(5): 201-207. 35 Mao G Z, Han Y X, Liu X, et al. Technology status and trends of industrial wastewater treatment: a patent analysis[J]. Chemosphere, 2022, 288(Part 2): 132483. 36 Shanie T, Suprijadi J, Zulhanif. Text grouping in patent analysis using adaptive k-means clustering algorithm[J]. AIP Conference Proceedings, 2017, 1827(1): 020041. 37 田鹏伟, 张娴. 基于异构信息网络融合的专利技术主题识别研究[J]. 情报杂志, 2021, 40(8): 45-52. 38 Zhang J Z, Yu W Q. Early detection of technology opportunity based on analogy design and phrase semantic representation[J]. Scientometrics, 2020, 125(1): 551-576. 39 Anuranjana, Mittas N, Mehrotra D. Clustering the patent data using k-means approach[C]// Proceedings of the Conference on Software Engineering. Singapore: Springer, 2019: 639-645. 40 Zhou Y, Lin H, Liu Y F, et al. A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry[J]. Scientometrics, 2019, 120(1): 167-185. 41 Ren H Y, Zhao Y H. Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks[J]. Technovation, 2021, 101: 102196. 42 Jeon D, Ahn J M, Kim J, et al. A doc2vec and local outlier factor approach to measuring the novelty of patents[J]. Technological Forecasting and Social Change, 2022, 174: 121294. 43 Wang H C, Chi Y C, Hsin P L. Constructing patent maps using text mining to sustainably detect potential technological opportunities[J]. Sustainability, 2018, 10(10): 3729. 44 Kim D H, Lee H, Kwak J. Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: an investigation of the M2M/IoT patent network[J]. Research Policy, 2017, 46(7): 1234-1254. 45 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 46 吕璐成, 周健, 王学昭, 等. 基于双层主题模型的技术演化分析框架及其应用[J]. 数据分析与知识发现, 2022, 6(2): 18-32. 47 陈浩, 张梦毅, 程秀峰. 融合主题模型与决策树的跨地区专利合作关系发现与推荐——以广东省和武汉市高校专利库为例[J]. 数据分析与知识发现, 2021, 5(10): 37-50. 48 Yun J, Geum Y. Automated classification of patents: a topic modeling approach[J]. Computers & Industrial Engineering, 2020, 147: 106636. 49 Kim J, Geum Y. How to develop data-driven technology roadmaps: the integration of topic modeling and link prediction[J]. Technological Forecasting and Social Change, 2021, 171: 120972. 50 Choi D, Song B. Exploring technological trends in logistics: topic modeling-based patent analysis[J]. Sustainability, 2018, 10(8): 2810. 51 韩芳, 张生太, 冯凌子, 等. 基于专利文献技术融合测度的突破性创新主题识别——以太阳能光伏领域为例[J]. 数据分析与知识发现, 2021, 5(12): 137-147. 52 张金柱, 王玥, 胡一鸣. 基于专利科学引文内容表示学习的科学技术主题关联分析研究[J]. 数据分析与知识发现, 2019, 3(12): 52-60. 53 刘小玲, 谭宗颖. 基于专利多属性融合的技术主题划分方法研究[J]. 数据分析与知识发现, 2022, 6(2): 45-54. 54 Yoon B, Magee C L. Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction[J]. Technological Forecasting and Social Change, 2018, 132: 105-117. 55 Seo W. A patent-based approach to identifying potential technology opportunities realizable from a firm’s internal capabilities[J]. Computers & Industrial Engineering, 2022, 171: 108395. 56 Han X T, Zhu D H, Wang X F, et al. Technology opportunity analysis: combining SAO networks and link prediction[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1288-1298. 57 Cho J H, Lee J, Sohn S Y. Predicting future technological convergence patterns based on machine learning using link prediction[J]. Scientometrics, 2021, 126(7): 5413-5429. 58 Park I, Yoon B. Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network[J]. Journal of Informetrics, 2018, 12(4): 1199-1222. 59 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. 60 Aaldering L J, Leker J, Song C H. Competition or collaboration? - Analysis of technological knowledge ecosystem within the field of alternative powertrain systems: a patent-based approach[J]. Journal of Cleaner Production, 2019, 212: 362-371. 61 Qi Y, Zhang X, Hu Z Y, et al. Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction[J]. Scientometrics, 2022, 127(9): 5519-5550. 62 Hong S, Lee C Y. Effective indexes and classification algorithms for supervised link prediction approach to anticipating technology convergence: a comparative study[J]. IEEE Transactions on Engineering Management, 2023, 70(4): 1430-1441. 63 Nakai K, Nonaka H, Hentona A, et al. Community detection and growth potential prediction using the stochastic block model and the long short-term memory from patent citation networks[C]// Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway: IEEE, 2018: 1884-1888. 64 Chen G F, Xu C, Wang J Y, et al. Nonnegative matrix factorization for link prediction in directed complex networks using PageRank and asymmetric link clustering information[J]. Expert Systems with Applications, 2020, 148: 113290. 65 Han F, Magee C L. Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology[J]. Scientometrics, 2018, 116(2): 767-796. 66 Geum Y, Kim M. How to identify promising chances for technological innovation: keygraph-based patent analysis[J]. Advanced Engineering Informatics, 2020, 46: 101155.