史敏, 罗建, 蔡丽君. 基于专利说明书语义分析的潜在竞争对手识别研究[J]. 情报学报, 2020, 39(11): 1171-1181.
Shi Min, Luo Jian, Cai Lijun. Research on Identification of Potential Competitors Based on the Semantic Analysis of Patent Specification. 情报学报, 2020, 39(11): 1171-1181.
1 Bower J L, Christensen C M. Disruptive technologies: Catching the wave[J]. Harvard Business Review, 1995, 73: 43-53. 2 Fabry B, Ernst H, Langholz J, et al. Patent portfolio analysis as a useful tool for identifying R&D and business opportunities—An empirical application in the nutrition and health industry[J]. World Patent Information, 2006, 28(3): 215-225. 3 Chen M J. Competitor analysis and interfirm rivalry: Toward a theoretical integration[J]. Academy of Management Review, 1996, 21(1): 100-134. 4 Peteraf M A, Bergen M. Scanning dynamic competitive landscapes: A customer and resource based framework[R]. Carlson School of Management, University of Minnesota, 2001. 5 Bergen M, Peteraf M A. Competitor identification and competitor analysis: A broad-based managerial approach[J]. Managerial and Decision Economics, 2002, 23(4-5): 157-169. 6 Peng Y S, Liang I C. A dynamic framework for competitor identification: A neglecting role of dominant design[J]. Journal of Business Research, 2016, 69(5): 1898-1903. 7 温金林, 于英川. 监视竞争对手——对竞争对手进行排序[J]. 情报学报, 2001, 20(5): 598-603. 8 王曰芬, 甘利人. 竞争对手的情报研究[J]. 情报理论与实践, 2001, 24(4): 271-273. 9 王德恒, 吴潇. 竞争对手识别研究[J]. 商业研究, 2003(17): 30-32. 10 刘志辉, 李辉, 李文绚, 等. 基于多维框架的企业竞争威胁测度方法研究[J]. 情报学报, 2017, 36(7): 654-662. 11 张敬伟, 杜鑫. 撕开潜在对手的隐身衣[J]. 企业管理, 2018(8): 86-87. 12 Ernst H. Patent information for strategic technology management[J]. World Patent Information, 2003, 25(3): 233-242. 13 Tang J, Li W C, Usadi A K, et al. PatentMiner: Topic-driven patent analysis and mining[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 1366-1374. 14 Lee M, Lee S. Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases[J]. Technological Forecasting and Social Change, 2017, 119: 170-183. 15 Grieser W, Liu Z. Corporate investment and innovation in the presence of competitor constraints[J]. The Review of Financial Studies, 2019, 32(11): 4271-4303. 16 王兴旺, 孙济庆. 专利地图技术在竞争对手分析中的应用研究[J]. 中国科技论坛, 2009(6): 88-94. 17 张红芹, 鲍志彦. 基于专利地图的竞争对手识别研究[J]. 情报科学, 2011, 29(12): 1825-1829. 18 张虎胆. 基于专利网络方法的技术竞争对手识别研究[D]. 武汉: 武汉大学, 2013. 19 吴菲菲, 杨梓, 黄鲁成. 基于专利信息的企业潜在竞争对手识别——以OLED技术为例[J]. 情报学报, 2017, 36(9): 954-963. 20 Porter M E. The five competitive forces that shape strategy[J]. Harvard Business Review, 2008, 86(1): 25-40. 21 中华人民共和国专利法(2008修正)[EB/OL]. (2015-09-02) [2020- 03-13]. https://www.cnipa.gov.cn/art/2015/9/2/art_97_28193.html 22 国家知识产权局. 专利审查指南[EB/OL]. (2019-12-31) [2020-03-13]. https://www.cnipa.gov.cn/art/2019/12/31/art_526_145920.html. 23 中华人民共和国专利法实施细则(2010修订)[EB/OL]. (2015-09-02) [2020-03-13]. https://www.cnipa.gov.cn/art/2015/9/2/art_98_28203.html. 24 Seol H, Lee S, Kim C. Identifying new business areas using patent information: A DEA and text mining approach[J]. Expert Systems with Applications, 2011, 38(4): 2933-2941. 25 Ernst H. Patent applications and subsequent changes of performance: Evidence from time-series cross-section analyses on the firm level[J]. Research Policy, 2001, 30(1): 143-157. 26 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 27 Phan X H, Nguyen L M, Horiguchi S. Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008: 91-100. 28 Titov I, McDonald R. Modeling online reviews with multi-grain topic models[C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008: 111-120. 29 Sugimoto C R, Li D F, Russell T G, et al. The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation[J]. Journal of the American Society for Information Science and Technology, 2011, 62(1): 185-204. 30 王博, 刘盛博, 丁堃, 等. 基于LDA主题模型的专利内容分析方法[J]. 科研管理, 2015, 36(3): 111-117. 31 李杰, 王小伟. 基于作者主题模型的遥感图像自动类别标注方法[J]. 计算机应用与软件, 2013, 30(10): 263-265, 296. 32 徐涵, 刘小平. 作者主题模型及其改进的方法与应用研究综述[J]. 图书情报工作, 2019, 63(7): 135-145. 33 赵华, 章成志. 利用作者主题模型进行图书馆UGC的主题发现与演化研究[J]. 图书馆论坛, 2016, 36(7): 34-45. 34 赵鑫. 主题模型在文本挖掘中的应用[D]. 北京: 北京大学, 2011. 35 Rosen-Zvi M, Chemudugunta C, Griffiths T, et al. Learning author-topic models from text corpora[J]. ACM Transactions on Information Systems, 2010, 28(1): 1-38. 36 关鹏, 王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016(9): 42-50. 37 王静茹, 陈震. 基于隐含狄利克雷分布的文本主题提取对比研究[J]. 情报科学, 2018, 36(1): 102-107. 38 陈果, 吴微. 细分领域LDA主题分析中选词方案的效果对比研究[J]. 情报理论与实践, 2019, 42(6): 138-143. 39 Mortensen O. The author-topic model[D]. Kongens Lyngby: Technical University of Denmark, 2017. 40 Newman D, Noh Y, Talley E M, et al. Evaluating topic models for digital libraries[C]// Proceedings of the 10th Annual Joint Conference on Digital Libraries. New York: ACM Press, 2010: 215-224. 41 R?der M, Both A, Hinneburg A. Exploring the space of topic coherence measures[C]// Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2015: 399-408. 42 Mimno D, Wallach H M, Talley E, et al. Optimizing semantic coherence in topic models[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2011: 262-272. 43 Stevens K, Kegelmeyer P, Andrzejewski D, et al. Exploring topic coherence over many models and many topics[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2012: 952-961. 44 赵亮, 刘建辉, 王星. 基于Hellinger距离的混合数据集中分类变量相似度分析[J]. 计算机科学, 2016, 43(6): 280-282, 307. 45 Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]// Proceedings of the Second SIGHAN Workshop on Chinese Language Processing. Stroudsburg: Association for Computational Linguistics, 2003: 184-187. 46 唐晓波, 谢力. 基于主题的用户兴趣模型的构建及动态更新[J]. 情报理论与实践, 2016, 39(2): 116-123. 47 胡吉明, 陈果. 基于动态LDA主题模型的内容主题挖掘与演化[J]. 图书情报工作, 2014, 58(2): 138-142.