王若佳. 融合百度指数的流感预测机理与实证研究[J]. 情报学报, 2018, 37(2): 206-219.
Wang Ruojia. Mechanism and Empirical Research on Forecasting Influenza Epidemic Fused with Baidu Index. 情报学报, 2018, 37(2): 206-219.
[1] Ginsberg J, Mohebbi M H, Patel R S, et al.Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457: 1012-1014. [2] Valdivia A, López-Alcalde J, Vicente M, et al.Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10[J]. Eurosurveillance, 2010, 15(29): 2-7. [3] Wada K, Ohta H, Aizawa Y.Correlation of “Google Flu Trends” with Sentinel Surveillance Data for Influenza in 2009 in Japan[J]. The Open Public Health Journal, 2011,4: 17-20. [4] Cook S, Conrad C, Fowlkes A L, et al.Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic[J]. PLoS ONE, 2011, 6(8): e23610. [5] Cho S, Sohn C H, Jo M W, et al.Correlation between national influenza surveillance data and google trends in South Korea[J]. PLoS ONE, 2013, 8(12): e81422. [6] Kang M, Zhong H J, He J F, et al.Using Google Trends for influenza surveillance in South China[J]. PLoS ONE, 2013, 8(1): e55205. [7] 朱猛, 祖荣强, 霍翔, 等. 时间序列分析在流感疫情预测预警中的应用[J]. 中华预防医学杂志, 2011, 45(12): 1108-1111. [8] Spink A, Cole C.Human information behavior: Integrating diverse approaches and information use[J]. Journal of the American Society for Information Science and Technology, 2006, 57(1): 25-35. [9] 张崇, 吕本富, 彭赓, 等. 网络搜索数据与CPI的相关性研究[J]. 管理科学学报, 2012, 15(7): 50-59, 70. [10] 王炼, 贾建民. 基于网络信息搜索的旅游需求预测——来自黄金周的证据[J]. 系统管理学报, 2014, 23(3): 345-350, 358. [11] Kulkarni G, Kannan P K, Moe W.Using online search data to forecast new product sales[J]. Decision Support Systems, 2012, 52(3): 604-611. [12] Song T M, Song J, An J Y, et al.Psychological and social factors affecting internet searches on suicide in Korea: A big data analysis of Google search trends[J]. Yonsei Medical Journal, 2014, 55(1): 254-263. [13] Bardak B, Tan M.Prediction of influenza outbreaks by integrating Wikipedia article access logs and Google flu trend data[C]// Proceedings of the IEEE 15th International Conference on Bioinformatics and Bioengineering, Belgrade, 2015: 1-6. [14] 卢洪涛, 李纲. 网络搜索关键词时序变化特征研究——以H7N9禽流感关键词实验为例[J]. 情报杂志, 2014, 33(11): 175-180. [15] 杨艳红, 曾庆, 赵寒, 等. 基于谷歌趋势的乙型肝炎预测模型[J]. 上海交通大学学报(医学版), 2013, 33(2): 204-208. [16] Cao P H, Wang X, Fang S S, et al.Forecasting influenza epidemics from multi-stream surveillance data in a subtropical city of China[J]. PLoS ONE, 2014, 9(3): e92945. [17] Ortiz J R, Zhou H, Shay D K, et al.Monitoring influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu Trends[J]. PLoS ONE, 2011, 6(4): e18687. [18] 肖静. 高校教师健康信息行为研究[D]. 南京:南京航空航天大学, 2008. [19] 张馨遥. 健康信息需求研究的内容与意义[J]. 医学与社会, 2010, 23(1): 51-53. [20] Wilson T D.Human information behavior[J]. Informing Science: The International Journal of an Emerging Transdiscipline, 2000, 3: 49-56. [21] 李秀婷, 刘凡, 董纪昌, 等. 基于互联网搜索数据的中国流感监测[J]. 系统工程理论与实践, 2013, 33(12): 3028-3034. [22] 李锐, 孙利谦, 熊成龙, 等. 基于互联网搜索数据研究全球高致病性禽流感病毒H5N1的暴发监测[J]. 中华疾病控制杂志, 2015, 19(8): 773-777. [23] Culotta A.Towards detecting influenza epidemics by analyzing Twitter messages[C]// Proceedings of the First Workshop on Social Media Analytics. New York: ACM Press, 2010: 115-122. [24] Xu W, Han Z W, Ma J.A neural netwok based approach to detect influenza epidemics using search engine query data[C]// Proceedings of the International Conference on Machine Learning and Cybernetics, Qingdao, 2010: 1408-1412. [25] Xu Q N, Gel Y R, Ramirez Ramirez L L, et al. Forecasting influenza in Hong Kong with Google search queries and statistical model fusion[J]. PLoS ONE, 2017, 12(5): e0176690. [26] Woo H, Cho Y, Shim E, et al.Estimating influenza outbreaks using both search engine query data and social media data in South Korea[J]. Journal of Medical Internet Research, 2016, 18(7): e177. [27] 卢汉体, 李傅冬, 林君芬, 等. 基于支持向量机的浙江省流感样病例预警模型研究[J]. 浙江大学学报(医学版), 2015, 44(6): 653-658. [28] 中国国家流感中心. 中国流感监测方案(2010年版)[EB/OL]. (2016-05-20) [2017-12-17]. http://www.chinaivdc.cn/cnic/fascc/ 201708/t20170809_149276.htm. [29] Santillana M, Nguyen A T, Dredze M, et al.Combining search, social media, and traditional data sources to improve influenza surveillance[J]. PLoS Computational Biology, 2015, 11(10): e1004513. [30] 王若佳, 李培. 基于互联网搜索数据的流感监测模型比较与优化[J]. 图书情报工作, 2016, 60(18): 122-132. [31] 夏国恩, 金炜东. 基于支持向量机的客户流失预测模型[J]. 系统工程理论与实践, 2008, 28(1): 71-77.