李凌英, 闵超, 孙建军. 引文波峰的量化与分布探究[J]. 情报学报, 2019, 38(7): 697-708.
Li Lingying, Min Chao, and Sun. On the Quantification and Distribution of Citation Peaks. 情报学报, 2019, 38(7): 697-708.
1 GarfieldE. Citation analysis as a tool in journal evaluation[J]. Science, 1972, 178(4060): 471-479. 2 MohlerB A. Citation analysis as an assessment tool[J]. Science & Technology Libraries, 2005, 25(4): 57-64. 3 MoedH F. Citation analysis in research evaluation[J]. Information Science and Knowledge Management, 2011, 57(1): 13-18. 4 GarfieldE. The history and meaning of the journal impact factor[J]. Journal of the American Medical Association, 2006, 295(1): 90-93. 5 CroninB, MehoL. Using the h-index to rank influential information scientists[J]. Journal of the American Society for Information Science and Technology, 2006, 57(9): 1275-1278. 6 郭倩影, 杜建, 唐小利. 学术传承意义上“学术链”的识别方法探讨——以2014年诺贝尔化学奖为例[J]. 情报资料工作, 2018(2): 29-36. 7 MinC, DingY, LiJ, et al. Innovation or imitation: The diffusion of citations[J]. Journal of the Association for Information Science and Technology, 2018, 69(10): 1271-1282. 8 CanoV, LindN C. Citation life cycles of ten citation classics[J]. Scientometrics, 1991, 22(2): 297-312. 9 BaumgartnerS E, LeydesdorffL. Group-based trajectory modeling (GBTM) of citations in scholarly literature: Dynamic qualities of “transient” and “sticky knowledge claims”[J]. Journal of the Association for Information Science and Technology, 2014, 65(4): 797-811. 10 LiJ, YeF Y. A probe into the citation patterns of high-quality and high-impact publications[J]. Malaysian Journal of Library and Information Science, 2014, 19(2): 17-33. 11 van RaanA F J. Sleeping beauties in science[J]. Scientometrics, 2004, 59(3): 467-472. 12 KeQ, FerraraE, RadicchiF, et al. Defining and identifying Sleeping Beauties in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 7426-7431. 13 LiJ, ShiD B, ZhaoS X, et al. A study of the “heartbeat spectra” for “sleeping beauties”[J]. Journal of Informetrics, 2014, 8(3): 493-502. 14 LiJ, YeF Y. Distinguishing sleeping beauties in science[J]. Scientometrics, 2016, 108(2): 821-828. 15 闵超, YingDing, 李江, 等. 单篇论著的引文扩散[J]. 情报学报, 2018, 37(4): 341-350. 16 ColavizzaG, FranceschetM. Clustering citation histories in the Physical Review[J]. Journal of Informetrics, 2016, 10(4): 1037-1051. 17 BornmannL, YeA, YeF. Identifying landmark publications in the long run using field-normalized citation data[J]. Journal of Documentation, 2018, 74(2): 278-288. 18 HeidornP B. Shedding light on the dark data in the long tail of science[J]. Library Trends, 2008, 57(2): 280-299. 19 PeruzzoF. Sleeping beauties and the citation dynamics in the network of scientific papers[EB/OL]. [2018-11-16]. http://tesi.cab.unipd.it/50039/1/Peruzzo_Fabio.pdf. 20 杜建, 武夷山. 一个用于识别睡美人文献的新的无参数指标——基于“Science”和“Nature”上睡美人文献的验证[J]. 情报理论与实践, 2017, 40(2): 19-25. 21 SunJ J, MinC, LiJ. A vector for measuring obsolescence of scientific articles[J]. Scientometrics, 2016, 107(2): 745-757. 22 YeF Y, BornmannL. “Smart girls” versus “sleeping beauties” in the sciences: The identification of instant and delayed recognition by using the citation angle[J]. Journal of the Association for Information Science and Technology, 2018, 69(3): 359-367. 23 EggheL, BornmannL, GunsR. A proposal for a first-citation-speed-index[J]. Journal of Informetrics, 2011, 5(1): 181-186. 24 RiniaE J, Van LeeuwenT N, BruinsE E W, et al. Citation delay in interdisciplinary knowledge exchange[J]. Scientometrics, 2001, 51(1): 293-309. 25 Gl?nzelW, RousseauR, ZhangL. A visual representation of relative first-citation times[J]. Journal of the American Society for Information Science and Technology, 2012, 63(7): 1420-1425. 26 ChakrabortyT, KumarS, GoyalP, et al. Towards a stratified learning approach to predict future citation counts[C]//Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries. Piscataway: IEEE Press, 2014: 351-360. 27 GarnerJ, PorterA L, NewmanN C. Distance and velocity measures: using citations to determine breadth and speed of research impact[J]. Scientometrics, 2014, 100(3): 687-703. 28 Della SalaS, GrafmanJ. Five-year impact factor[J]. Cortex, 2009, 45(8): 911. 29 LiuX L, GaiS S, ZhangS L, et al. An analysis of peer-reviewed scores and impact factors with different citation time windows: A case study of 28 ophthalmologic journals[J]. PLoS ONE, 2015, 10(8): e135583. 30 赵星. JCR五年期影响因子探析[J]. 中国图书馆学报, 2010, 36(3): 120-126. 31 李江, 姜明利, 李玥婷. 引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J]. 中国图书馆学报, 2014, 40(2): 41-49. 32 LiJ. Citation curves of “all-elements-sleeping-beauties”: “flash in the pan” first and then “delayed recognition”[J]. Scientometrics, 2014, 100(2): 595-601. 33 BouabidH. Revisiting citation aging: a model for citation distribution and life-cycle prediction[J]. Scientometrics, 2011, 88(1): 199-211. 34 王海燕, 马峥, 潘云涛, 等. 高被引论文与“睡美人”论文引用曲线及影响因素研究[J]. 图书情报工作, 2015, 59(16): 83-89. 35 PichappanP, PonnuduraiR. Skewness in citation peak[C]// Proceedings of the 7th Conference of the International Society for Scientometrics and Informetrics. Colima: University of Colima, 1999. 36 SinatraR, WangD S, DevilleP, et al. Quantifying the evolution of individual scientific impact[J]. Science, 2016, 354(6312): aaf5239. 37 ZhaoS X, LiJ. Citation peaks in modern science: 1900-2010[J]. Current Science, 2015, 109(9): 1523-1525. 38 PonomarevI V, WilliamsD E, HackettC J, et al. Predicting highly cited papers: A method for early detection of candidate breakthroughs[J]. Technological Forecasting and Social Change, 2014, 81: 49-55. 39 LachanceC, LariviereV. On the citation lifecycle of papers with delayed recognition[J]. Journal of Informetrics, 2014, 8(4): 863-872. 40 YoonS J, YoonD Y, LeeH J, et al. Distribution of citations received by scientific papers published in the imaging literature from 2001 to 2010: Decreasing inequality and polarization[J]. American Journal of Roentgenology, 2017, 209(2): 248-254. 41 MinC, SunJ J, PeiL, et al. Measuring delayed recognition for papers: Uneven weighted summation and total citations[J]. Journal of Informetrics, 2016, 10(4): 1153-1165. 42 LiuL, WangY, SinatraR, et al. Hot streaks in artistic, cultural, and scientific careers[J]. Nature, 2018, 559(7714): 396-399. 43 De Solla PriceD. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27(5): 292-306. 44 LariviereV, GingrasY. The impact factor’s Matthew effect: A natural experiment in bibliometrics[J]. Journal of the Association for Information Science and Technology, 2010, 61(2): 424-427. 45 WangD S, SongC M, BarabasiA. Quantifying long-term scientific impact[J]. Science, 2013, 342(6154): 127-132. 46 BornmannL, MutzR. Further steps towards an ideal method of measuring citation performance: The avoidance of citation (ratio) averages in field-normalization[J]. Journal of Informetrics, 2011, 5(1): 228-230. 47 BianconiG, BarabásiA L. Bose-Einstein condensation in complex networks[J]. Physical Review Letters, 2001, 86(24): 5632-5635. 48 BarabásiA. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. 49 NashJ R, AraújoR J, ShidelerG S. Contributing factors to long-term citation count in marine and freshwater biology articles[J]. Learned Publishing, 2018, 31(2): 131-139. 50 StegehuisC, LitvakN, WaltmanL. Predicting the long-term citation impact of recent publications[J]. Journal of Informetrics, 2015, 9(3): 642-657. 51 SternD I. High-ranked social science journal articles can be identified from early citation information[J]. PLoS ONE, 2014, 9(11): e112520. 52 李正风, 梁永霞. 引文动机的生态学解释[J]. 科学学研究, 2012, 30(4): 487-494. 53 赵蓉英, 曾宪琴, 陈必坤. 全文本引文分析——引文分析的新发展[J]. 图书情报工作, 2014, 58(9): 129-135.