1.School of Information Management, Central China Normal University, Wuhan 430079 2.Intelligent Computing Laboratory for Cultural Heritage, Wuhan University, Wuhan 430072 3.University of Wisconsin-Milwaukee, Milwaukee 53202
翟姗姗, 余华娟, 陈健瑶, 夏立新. 基于多维特征分析的戏曲类方志文献命名实体识别研究[J]. 情报学报, 2024, 43(9): 1094-1104.
Zhai Shanshan, Yu Huajuan, Chen Jianyao, Xia Lixin. Named Entity Recognition of Local Chronicles Literature in Traditional Chinese Opera Based on Multi-dimensional Feature Analysis. 情报学报, 2024, 43(9): 1094-1104.
1 鲁丹, 李欣. 数字人文环境下异构方志元数据整合策略[J]. 图书馆论坛, 2019, 39(4): 158-165. 2 刘丹. 面向方志的发现平台设计与实现[J]. 图书馆理论与实践, 2017(3): 109-112. 3 朱锁玲, 包平. 方志类古籍地名识别及系统构建[J]. 中国图书馆学报, 2011, 37(3): 118-124. 4 徐晨飞, 叶海影, 包平. 基于深度学习的方志物产资料实体自动识别模型构建研究[J]. 数据分析与知识发现, 2020, 4(8): 86-97. 5 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340. 6 岑志坚. 地方志文献的特征、价值及开发[J]. 科技情报开发与经济, 2009, 19(4): 87-89. 7 熊欣, 王昊, 邓三鸿. 面向方志知识图谱的术语抽取模型迁移学习研究[J]. 情报理论与实践, 2021, 44(4): 176-184. 8 Kim J H, Woodland P C. A rule-based named entity recognition system for speech input[C]// Proceedings of the 6th International Conference on Spoken Language Processing. Singapore: ISCA, 2000: 528-531. 9 张小衡, 王玲玲. 中文机构名称的识别与分析[J]. 中文信息学报, 1997, 11(4): 21-32. 10 Bikel D M, Schwartz R, Weischedel R M. An algorithm that learns what’s in a name[J]. Machine Learning, 1999, 34(1): 211-231. 11 Krishnan V, Manning C D. An effective two-stage model for exploiting non-local dependencies in named entity recognition[C]// Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2006: 1121-1128. 12 Collins M, Singer Y. Unsupervised models for named entity classification[C]// Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. Stroudsburg: Association for Computational Linguistics, 1999:100-110. 13 Mikheev A, Moens M, Grover C. Named entity recognition without gazetteers[C]// Proceedings of the Ninth Conference on European Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 1999: 1-8. 14 Dong X S, Qian L J, Guan Y, et al. A multiclass classification method based on deep learning for named entity recognition in electronic medical records[C]// Proceedings of the 2016 New York Scientific Data Summit. Piscataway: IEEE, 2016: 1-10. 15 Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2016: 260-270. 16 李丽双, 郭元凯. 基于CNN-BLSTM-CRF模型的生物医学命名实体识别[J]. 中文信息学报, 2018, 32(1): 116-122. 17 Lund B D, Wang T. Chatting about ChatGPT: how may AI and GPT impact academia and libraries?[J]. Library Hi Tech News, 2023, 40(3): 26-29. 18 Peng N Y, Dredze M. Improving named entity recognition for Chinese social media with word segmentation representation learning[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 149-155. 19 Rondeau M A, Su Y. LSTM-based NeuroCRFs for named entity recognition[C]// Proceedings of the 17th Annual Conference of the International Speech Communication Association. San Francisco: International Speech Communication Association, 2016: 665-669. 20 赵洪, 王芳. 理论术语抽取的深度学习模型及自训练算法研究[J]. 情报学报, 2018, 37(9): 923-938. 21 王昊, 邓三鸿, 苏新宁, 等. 基于深度学习的情报学理论及方法术语识别研究[J]. 情报学报, 2020, 39(8): 817-828. 22 范涛, 王昊, 陈玥彤. 基于深度迁移学习的地方志多模态命名实体识别研究[J]. 情报学报, 2022, 41(4): 412-423. 23 王昊, 林克柔, 孟镇, 等. 文本表示及其特征生成对法律判决书中多类型实体识别的影响分析[J]. 数据分析与知识发现, 2021, 5(7): 10-25. 24 雷树杰, 邢富坤, 王闻慧. 融合多类型特征的特定领域实体识别研究[J]. 计算机应用与软件, 2019, 36(11): 210-217. 25 赵莉莉. 浅析地方志资源数字化[J]. 河南图书馆学刊, 2019, 39(4): 87-89. 26 王伟光: 在国家数字方志馆揭牌暨“方志中国”展览开展仪式上的讲话[EB/OL]. (2016-07-19) [2023-09-10]. http://www.cass.net.cn/yuanlingdao/lingdaoyanlun/201607/t20160719_3125843.html. 27 中国数字方志库[EB/OL]. [2023-09-10]. http://x.wenjinguan.com/. 28 徐晨飞, 包平, 张惠敏, 等. 基于关联数据的方志物产史料语义化知识组织研究[J]. 大学图书馆学报, 2020, 38(6): 78-88. 29 高劲松, 周树斌, 高颖, 等. 山水志史料资源语义知识关联与多维知识发现研究[J]. 情报资料工作, 2023, 44(5): 82-92. 30 陈健瑶, 翟姗姗, 夏立新, 等. 融合句法特征和句法相似度的网络舆情突发事件识别方法研究[J]. 图书情报工作, 2021, 65(9): 41-50. 31 《楚剧志》编纂组. 楚剧志[M]. 北京: 中国戏剧出版社, 1993. 32 袁里驰. 基于依存关系的句法分析统计模型[J]. 中南大学学报(自然科学版), 2009, 40(6): 1630-1635. 33 Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 6645-6649. 34 Lafferty J D, McCallum A, Pereira F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2001: 282-289. 35 毛瑞彬, 朱菁, 李爱文, 等. 基于自然语言处理的产业链知识图谱构建[J]. 情报学报, 2022, 41(3): 287-299.