王震宇, 朱学芳. 基于多模态Transformer的虚假新闻检测研究[J]. 情报学报, 2023, 42(12): 1477-1486.
Wang Zhenyu, Zhu Xuefang. Research on Fake News Detection Based on Multimodal Transformer. 情报学报, 2023, 42(12): 1477-1486.
1 Allcott H, Gentzkow M. Social media and fake news in the 2016 election[J]. Journal of Economic Perspectives, 2017, 31(2): 211-236. 2 Castillo C, Mendoza M, Poblete B. Information credibility on twitter[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 675-684. 3 Kwon S, Cha M, Jung K, et al. Prominent features of rumor propagation in online social media[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining. Piscataway: IEEE, 2013: 1103-1108. 4 Ma J, Gao W, Mitra P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 3818-3824. 5 Yu F, Liu Q A, Wu S, et al. A convolutional approach for misinformation identification[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3901-3907. 6 Wang Y Q, Ma F L, Jin Z W, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 849-857. 7 Khattar D, Goud J S, Gupta M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2019: 2915-2921. 8 Singh P, Srivastava R, Rana K P S, et al. SEMI-FND: stacked ensemble based multimodal inference for faster fake news detection[OL]. (2022-05-17) [2022-11-10]. https://arxiv.org/ftp/arxiv/papers/2205/2205.08159.pdf. 9 张国标, 李洁, 胡潇戈. 基于多模态特征融合的社交媒体虚假新闻检测[J]. 情报科学, 2021, 39(10): 126-132. 10 Singhal S, Shah R R, Chakraborty T, et al. SpotFake: a multi-modal framework for fake news detection[C]// Proceedings of the 2019 IEEE Fifth International Conference on Multimedia Big Data. Piscataway: IEEE, 2019: 39-47. 11 王婕, 刘芸, 纪淑娟. 基于矩阵分解双线性池化的多模态融合虚假新闻检测[J]. 计算机应用研究, 2022, 39(10): 2968-2973, 2978. 12 Qian S S, Wang J G, Hu J, et al. Hierarchical multi-modal contextual attention network for fake news detection[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2021: 153-162. 13 Lu J S, Batra D, Parikh D, et al. ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2019: 13-23. 14 Hendricks L A, Mellor J, Schneider R, et al. Decoupling the role of data, attention, and losses in multimodal transformers[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 570-585. 15 Rashkin H, Choi E, Jang J Y, et al. Truth of varying shades: analyzing language in fake news and political fact-checking[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 2931-2937. 16 Ma J, Gao W, Wei Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM Press, 2015: 1751-1754. 17 Bahad P, Saxena P, Kamal R. Fake news detection using bi-directional LSTM-recurrent neural network[J]. Procedia Computer Science, 2019, 165: 74-82. 18 Qi P, Cao J, Yang T Y, et al. Exploiting multi-domain visual information for fake news detection[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 518-527. 19 Jin Z W, Cao J, Guo H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]// Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM Press, 2017: 795-816. 20 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010. 21 Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale[OL]. (2020-06-03) [2022-11-10]. https://arxiv.org/pdf/2010.11929.pdf. 22 Liu Z, Lin Y T, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. 23 Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]// Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. 24 Chen M, Radford A, Child R, et al. Generative pretraining from pixels[C]// Proceedings of the 37th International Conference on Machine Learning. Cambridge: MIT Press, 2020: 1691-1703. 25 Liu R J, Yuan Z J, Liu T, et al. End-to-end lane shape prediction with transformers[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3693-3701. 26 Kenton J D M W C, Toutanova L K. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186. 27 Liu Y H, Ott M, Goyal N, et al. RoBERTa: a robustly optimized BERT pretraining approach[OL]. (2019-07-26) [2022-11-10]. https://arxiv.org/pdf/1907.11692.pdf. 28 Sun C, Qiu X P, Xu Y G, et al. How to fine-tune BERT for text classification?[C]// Proceedings of the 18th China National Conference on Chinese Computational Linguistics. Cham: Springer, 2019: 194-206. 29 Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]// Proceedings of the 38th International Conference on Machine Learning. Cambridge: MIT Press, 2021: 8748-8763. 30 Boididou C, Andreadou K, Papadopoulos S, et al. Verifying multimedia use at MediaEval 2015[C]// Proceedings of the MediaEval 2015 Workshop. CEUR-WS.org, 2015: Paper 4. 31 Li Y Q, Ji K, Ma K, et al. Fake news detection based on the correlation extension of multimodal information[C]// Proceedings of the 6th Aisa-Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data. Cham: Springer, 2023: 443-450. 32 Kim W, Son B, Kim I. Vilt: vision-and-language transformer without convolution or region supervision[C]// Proceedings of the 38th International Conference on Machine Learning. Cambridge: MIT Press, 2021: 5583-5594. 33 Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. 34 Sharma P, Ding N, Goodman S, et al. Conceptual Captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 2556-2565. 35 Ordonez V, Kulkarni G, Berg T L. Im2Text: describing images using 1 million captioned photographs[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2011: 1143-1151. 36 Krishna R, Zhu Y K, Groth O, et al. Visual Genome: connecting language and vision using crowdsourced dense image annotations[J]. International Journal of Computer Vision, 2017, 123(1): 32-73. 37 Cubuk E D, Zoph B, Shlens J, et al. Randaugment: practical automated data augmentation with a reduced search space[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 3008-3017. 38 朱学芳, 王震宇. 基于多模态Transformer的虚假新闻检测方法: CN115982350A[P]. 2023-04-18. 责任编辑 王克平)