1 Berkovsky S, Kuflik T, Ricci F. Mediation of user models for enhanced personalization in recommender systems[J]. User Modeling and User-Adapted Interaction, 2008, 18(3): 245-286. 2 Berkovsky S, Kuflik T, Ricci F. Cross-domain mediation in collaborative filtering[C]// Proceedings of the International Conference on User Modeling. Heidelberg: Springer, 2007: 355-359. 3 Li B, Yang Q, Xue X Y. Can movies and books collaborate?: cross-domain collaborative filtering for sparsity reduction[C]// Proceedings of the 21st International Jont Conference on Artifical Intelligence. San Francisco: Morgan Kaufmann Publishers, 2009: 2052-2057. 4 Singh A P, Gordon G J. Relational learning via collective matrix factorization[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 650-658. 5 陈文珺, 杨佳佳. 基于共享知识迁移学习的跨领域推荐研究[J]. 情报科学, 2020, 38(6): 126-132. 6 Zhu F, Wang Y, Chen C C, et al. A deep framework for cross-domain and cross-system recommendations[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3711-3717. 7 Gao C, Chen X N, Feng F L, et al. Cross-domain recommendation without sharing user-relevant data[C]// Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 491-502. 8 Hu G N, Zhang Y, Yang Q. CoNet: collaborative cross networks for cross-domain recommendation[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 667-676. 9 He X N, Liao L Z, Zhang H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10 Vijaikumar M, Shevade S, Murty M N. Neural cross-domain collaborative filtering with shared entities[C]// Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2020: 729-745. 11 Kazama M, Varga I. Cross domain recommendation using vector space transfer learning[C]// Proceedings of the Poster Track of the 10th ACM Conference on Recommender Systems. CEUR-WS, 2016: paper 04. 12 Man T, Shen H W, Jin X L, et al. Cross-domain recommendation: an embedding and mapping approach[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017: 2464-2470. 13 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学: 信息科学, 2017, 47(8): 980-996. 14 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 15 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 16 Tang J, Qu M, Wang M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 17 Wang D X, Cui P, Zhu W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 1225-1234. 18 周慧, 赵中英, 李超. 面向异质信息网络的表示学习方法研究综述[J]. 计算机科学与探索, 2019, 13(7): 1081-1093. 19 Chang S Y, Han W, Tang J L, et al. Heterogeneous network embedding via deep architectures[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 119-128. 20 Dong Y X, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 135-144. 21 Zhang D K, Yin J, Zhu X Q, et al. MetaGraph2Vec: complex semantic path augmented heterogeneous network embedding[C]// Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2018: 196-208. 22 Zhao H, Yao Q M, Li J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 635-644. 23 Fu T Y, Lee W C, Lei Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM Press, 2017: 1797-1806. 24 刘云枫, 孙平, 葛志远. 基于网络表示学习的作者合作推荐模型[J]. 情报科学, 2020, 38(2): 75-80. 25 林原, 王凯巧, 刘海峰, 等. 网络表示学习在学者科研合作预测中的应用研究[J]. 情报学报, 2020, 39(4): 367-373. 26 Zheng J, Liu J, Shi C, et al. Recommendation in heterogeneous information network via dual similarity regularization[J]. International Journal of Data Science and Analytics, 2017, 3(1): 35-48. 27 Shi C, Hu B B, Zhao W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. 28 肖璐, 赵之辉, 陈果. 全局视角下的网络社区多元知识关联挖掘[J]. 图书情报工作, 2020, 64(6): 100-107. 29 Mnih A, Salakhutdinov R R. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2007: 1257-1264. 30 Hu L, Cao J, Xu G D, et al. Personalized recommendation via cross-domain triadic factorization[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM Press, 2013: 595-606. 31 吴晓英. 基于概率矩阵分解的馆藏数字资源智能推荐方法研究[J]. 情报理论与实践, 2014, 37(11): 94-97.