1 乔治·戴, 保罗·休梅克. 沃顿论新兴技术管理[M]. 石莹, 等译. 北京: 华夏出版社, 2002. 2 Lee C Y, Kim J, Kwon O, et al. Stochastic technology life cycle analysis using multiple patent indicators[J]. Technological Forecasting and Social Change, 2016, 106: 53-64. 3 周源, 刘宇飞, 薛澜. 一种基于机器学习的新兴技术识别方法: 以机器人技术为例[J]. 情报学报, 2018, 37(9): 939-955. 4 Porter A L, Garner J, Carley S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological Forecasting and Social Change, 2019, 146: 628-643. 5 Cobo M J, López-Herrera A G, Herrera-Viedma E, et al. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the Fuzzy Sets Theory field[J]. Journal of Informetrics, 2011, 5(1): 146-166. 6 Leone Sciabolazza V, Vacca R, Kennelly Okraku T, et al. Detecting and analyzing research communities in longitudinal scientific networks[J]. PLoS One, 2017, 12(8): e0182516. 7 Choi S, Yoon J, Kim K, et al. SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells[J]. Scientometrics, 2011, 88(3): 863-883. 8 Verhoeven D, Bakker J, Veugelers R. Measuring technological novelty with patent-based indicators[J]. Research Policy, 2016, 45(3): 707-723. 9 卢小宾, 杨冠灿, 徐硕, 等. 计量与演化视角下的新兴技术识别研究进展评述[J]. 情报学报, 2020, 39(6): 651-661. 10 Longadge R, Dongre S S. Class imbalance problem in data mining: review[J]. International Journal of Computer Science and Network, 2013, 2(1): 83-87. 11 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. 12 叶志飞, 文益民, 吕宝粮. 不平衡分类问题研究综述[J]. 智能系统学报, 2009, 4(2): 148-156. 13 Japkowicz N, Stephen S. The class imbalance problem: a systematic study[J]. Intelligent Data Analysis, 2002, 6(5): 429-449. 14 Weiss G M, Hirsh H. A quantitative study of small disjuncts[C/OL]// AAAI-00 Proceedings. Palo Alto: AAAI Press, 2000. https://www.aaai.org/Papers/AAAI/2000/AAAI00-102.pdf. 15 向鸿鑫, 杨云. 不平衡数据挖掘方法综述[J]. 计算机工程与应用, 2019, 55(4): 1-16. 16 Menardi G, Torelli N. Training and assessing classification rules with imbalanced data[J]. Data Mining and Knowledge Discovery, 2014, 28(1): 92-122. 17 Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. 18 Han H, Wang W Y, Mao B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]// Proceedings of the International Conference on Intelligent Computing. Heidelberg: Springer, 2005: 878-887. 19 He H B, Bai Y, Garcia E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]// Proceedings of the 2008 IEEE International Joint Conference on Neural Networks. IEEE, 2008: 1322-1328. 20 Prusa J, Khoshgoftaar T M, Dittman D J, et al. Using random undersampling to alleviate class imbalance on tweet sentiment data[C]// Proceedings of the 2015 IEEE International Conference on Information Reuse and Integration. IEEE, 2015: 197-202. 21 Yuan J H, Li J M, Zhang B. Learning concepts from large scale imbalanced data sets using support cluster machines[C]// Proceedings of the 14th ACM International Conference on Multimedia. New York: ACM Press, 2006: 441-450. 22 Zhang J P, Mani I. KNN approach to unbalanced data distributions: a case study involving information extraction[C]// Proceedings of the ICML'2003 Workshop on Learning from Imbalanced Datasets. ICML, 2003: 126. 23 Tomek I. Two modifications of CNN[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1976, SMC-6(11): 769-772. 24 Ali-Gombe A, Elyan E. MFC-GAN: class-imbalanced dataset classification using Multiple Fake Class Generative Adversarial Network[J]. Neurocomputing, 2019, 361: 212-221. 25 Douzas G, Bacao F. Effective data generation for imbalanced learning using conditional generative adversarial networks[J]. Expert Systems With Applications, 2018, 91: 464-471. 26 Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 63-77. 27 李勇, 刘战东, 张海军. 不平衡数据的集成分类算法综述[J]. 计算机应用研究, 2014, 31(5): 1287-1291. 28 刘定祥, 乔少杰, 张永清, 等. 不平衡分类的数据采样方法综述[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 102-112. 29 Lin E L, Chen Q, Qi X M. Deep reinforcement learning for imbalanced classification[J]. Applied Intelligence, 2020, 50(8): 2488-2502. 30 Shi M, Tang Y F, Zhu X Q, et al. Multi-class imbalanced graph convolutional network learning[C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2020: 2879-2885. 31 Ghorbani M, Kazi A, Soleymani Baghshah M, et al. RA-GCN: graph convolutional network for disease prediction problems with imbalanced data[J]. Medical Image Analysis, 2022, 75: 102272. 32 Liu W K, Zhang H, Ding Z Y, et al. A comprehensive active learning method for multiclass imbalanced data streams with concept drift[J]. Knowledge-Based Systems, 2021, 215: 106778. 33 Kang X, Shi X F, Wu Y N, et al. Active learning with complementary sampling for instructing class-biased multi-label text emotion classification[J/OL]. IEEE Transactions on Affective Computing, (2020-11-16). http://dx.doi.org/10.1109/TAFFC.2020.3038401. 34 Wu X J, Meng S F. E-commerce customer churn prediction based on improved SMOTE and AdaBoost[C]// Proceedings of the 2016 13th International Conference on Service Systems and Service Management. IEEE, 2016: 1-5. 35 游子莹. 不均衡样本的分类优化方法[D]. 武汉: 华中科技大学, 2018. 36 孙炜. 基于代价敏感的改进AdaBoost算法在不平衡数据中的应用[D]. 广州: 暨南大学, 2018. 37 翟夕阳, 王晓丹, 李睿, 等. 采用多类代价指数损失函数的代价敏感AdaBoost算法[J]. 西安交通大学学报, 2017, 51(8): 33-39. 38 王学玲, 王建林. 基于代价敏感的AdaBoost算法改进[J]. 计算机应用与软件, 2013, 30(10): 123-125, 138. 39 Zhou Z H. Cost-sensitive learning[C]// Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence. Heidelberg: Springer, 2011: 17-18. 40 平瑞, 周水生, 李冬. 高度不平衡数据的代价敏感随机森林分类算法[J]. 模式识别与人工智能, 2020, 33(3): 249-257. 41 Fan W, Stolfo S J, Zhang J X, et al. AdaCost: misclassification cost-sensitive boosting[C]// Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1999: 97-105. 42 Domingos P. MetaCost: a general method for making classifiers cost-sensitive[C]// Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 1999: 155-164. 43 Knoll U, Nakhaeizadeh G, Tausend B. Cost-sensitive pruning of decision trees[C]// Proceedings of the European Conference on Machine Learning. Heidelberg: Springer, 1994: 383-386. 44 Rotolo D, Hicks D, Martin B R. What is an emerging technology?[J]. Research Policy, 2015, 44(10): 1827-1843. 45 Trajtenberg M. A penny for your quotes: patent citations and the value of innovations[J]. The RAND Journal of Economics, 1990, 21(1): 172-187. 46 Tong X S, Frame J D. Measuring national technological performance with patent claims data[J]. Research Policy, 1994, 23(2): 133-141. 47 Breitzman A, Thomas P. Inventor team size as a predictor of the future citation impact of patents[J]. Scientometrics, 2015, 103(2): 631-647. 48 Lanjouw J O, Schankerman M. Characteristics of patent litigation: a window on competition[J]. The RAND Journal of Economics, 2001, 32(1): 129-151. 49 Reitzig M. Improving patent valuations for management purposes—validating new indicators by analyzing application rationales[J]. Research Policy, 2004, 33(6/7): 939-957. 50 Park H, Yoon J. Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: the case of Korean national R&D[J]. Scientometrics, 2014, 98(2): 853-890. 51 Sternitzke C. The international preliminary examination of patent applications filed under the Patent Cooperation Treaty—a proxy for patent value?[J]. Scientometrics, 2009, 78(2): 189-202. 52 Trajtenberg M, Henderson R, Jaffe A. University versus corporate patents: a window on the basicness of invention[J]. Economics of Innovation and New Technology, 1997, 5(1): 19-50. 53 Narin F, Noma E, Perry R. Patents as indicators of corporate technological strength[J]. Research Policy, 1987, 16(2-4): 143-155. 54 Arts S, Appio F P, Looy B. Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?[J]. Scientometrics, 2013, 97(2): 397-419. 55 Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32. 56 尹华, 胡玉平. 一种代价敏感随机森林算法[J]. 武汉大学学报(工学版), 2014, 47(5): 707-711. 57 Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data[R]. Berkeley: University of California, 2004: Report No.666. 58 Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. 59 赵永彬, 陈硕, 刘明, 等. 基于置信度代价敏感的支持向量机不均衡数据学习[J]. 计算机工程, 2015, 41(10): 177-180, 185. 60 Korkmaz S, ?ahman M A, Cinar A C, et al. Boosting the oversampling methods based on differential evolution strategies for imbalanced learning[J]. Applied Soft Computing, 2021, 112: 107787. 61 Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets[C]// Proceedings of the 15th European Conference on Machine Learning. Heidelberg: Springer, 2004: 39-50. 62 Mullick S S, Datta S, Dhekane S G, et al. Appropriateness of performance indices for imbalanced data classification: an analysis[J]. Pattern Recognition, 2020, 102: 107197. 63 Kim J, Kim J. The impact of imbalanced training data on machine learning for author name disambiguation[J]. Scientometrics, 2018, 117(1): 511-526. 64 Peng Y C, Li C Y, Wang K, et al. Examining imbalanced classification algorithms in predicting real-time traffic crash risk[J]. Accident Analysis & Prevention, 2020, 144: 105610. 65 Liu X. Classification accuracy and cut point selection[J]. Statistics in Medicine, 2012, 31(23): 2676-2686. 66 Maloof M A. Learning when data sets are imbalanced and when costs are unequal and unknown[C]// Proceedings of the ICML’03 Workshop on Learning from Imbalanced Data Sets II. Washington DC: ICML, 2003: 328-334. 67 Abdel-Aty M, Uddin N, Pande A. Split models for predicting multivehicle crashes during high-speed and low-speed operating conditions on freeways[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1908(1): 51-58.