1 Turney P D. Learning algorithms for keyphrase extraction[J]. Information Retrieval, 2000, 2(4): 303-336. 2 Papagiannopoulou E, Tsoumakas G. A review of keyphrase extraction[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10(2): e1339. 3 Carpenter P A, Just M A. Eye movements in reading[M]. New York: Academic Press, 1983. 4 Zhang Y Y, Zhang C Z. Using human attention to extract keyphrase from microblog post[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 5867-5872. 5 Lau J H, Baldwin T. An empirical evaluation of doc2vec with practical insights into document embedding generation[C]// Proceedings of the 1st Workshop on Representation Learning for NLP. Stroudsburg: Association for Computational Linguistics, 2016: 78-86. 6 Pagliardini M, Gupta P, Jaggi M. Unsupervised learning of sentence embeddings using compositional n-gram features[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 528-540. 7 Pennington J, Socher R, Manning C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543. 8 Witten I H, Paynter G W, Frank E, et al. KEA: practical automatic keyphrase extraction[C]// Proceedings of the 4th ACM Conference on Digital Libraries. New York: ACM Press, 1999: 254-255. 9 Jiang X, Hu Y H, Li H. A ranking approach to keyphrase extraction[C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 756-757. 10 章成志, 苏新宁. 基于条件随机场的自动标引模型研究[J]. 中国图书馆学报, 2008, 34(5): 89-94,99. 11 Gollapalli S D, Li X L, Yang P. Incorporating expert knowledge into keyphrase extraction[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3180-3187. 12 Zhang Q, Wang Y, Gong Y Y, et al. Keyphrase extraction using deep recurrent neural networks on twitter[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 836-845. 13 Meng R, Zhao S Q, Han S G, et al. Deep keyphrase generation[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 582-592. 14 Basaldella M, Antolli E, Serra G, et al. Bidirectional LSTM recurrent neural network for keyphrase extraction[C]// Proceedings of the Digital Libraries and Multimedia Archives:14th Italian Research Conference on Digital Libraries. Cham: Springer, 2017: 180-187. 15 Zhang Y Y, Li J, Song Y, et al. Encoding conversation context for neural keyphrase extraction from microblog posts[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 1676-1686. 16 Rayner K. Eye movements in reading and information processing: 20 years of research[J]. Psychological Bulletin, 1998, 124(3): 372-422. 17 Kennedy A, Pynte J, Murray W S, et al. Frequency and predictability effects in the Dundee Corpus: an eye movement analysis[J]. Quarterly Journal of Experimental Psychology, 2013, 66(3): 601-618. 18 Kliegl R, Grabner E, Rolfs M, et al. Length, frequency, and predictability effects of words on eye movements in reading[J]. European Journal of Cognitive Psychology, 2004, 16(1/2): 262-284. 19 Luke S G, Christianson K. The Provo Corpus: a large eye-tracking corpus with predictability norms[J]. Behavior Research Methods, 2018, 50(2): 826-833. 20 Cop U, Dirix N, Drieghe D, et al. Presenting GECO: an eyetracking corpus of monolingual and bilingual sentence reading[J]. Behavior Research Methods, 2017, 49(2): 602-615. 21 Hollenstein N, Rotsztejn J, Troendle M, et al. ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading[J]. Scientific Data, 2018, 5: 180291. 22 Barrett M, Bingel J, Keller F, et al. Weakly supervised part-of-speech tagging using eye-tracking data[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 579-584. 23 Li S, Gra?a J V, Taskar B. Wiki-ly supervised part-of-speech tagging[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2012: 1389-1398. 24 Mishra A, Kanojia D, Nagar S, et al. Leveraging cognitive features for sentiment analysis[C]// Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2016: 156-166. 25 Barrett M, S?gaard A. Reading behavior predicts syntactic categories[C]// Proceedings of the 19th Conference on Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2015: 345-349. 26 Barrett M, Bingel J, Hollenstein N, et al. Sequence classification with human attention[C]// Proceedings of the 22nd Conference on Computational Natural Language Learning. Stroudsburg: Association for Computational Linguistics, 2018: 302-312. 27 Zeng X S, Li J, Wang L, et al. Microblog conversation recommendation via joint modeling of topics and discourse[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2018: 375-385. 28 Campos R, Mangaravite V, Pasquali A, et al. YAKE! collection-independent automatic keyword extractor[C]// Proceedings of the 40th European Conference on IR Research. Cham: Springer, 2018: 806-810. 29 Chen W, Gao Y F, Zhang J N, et al. Title-guided encoding for keyphrase generation[C]// Proceedings of the 33th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6268-6275. 30 Jebbara S, Cimiano P. Improving opinion-target extraction with character-level word embeddings[C]// Proceedings of the First Workshop on Subword and Character Level Models in NLP. Stroudsburg: Association for Computational Linguistics, 2017: 159-167. 31 Graves A. Generating sequences with recurrent neural networks[EB/OL]. (2013-08-04). https://arxiv.org/pdf/1308.0850.pdf.