1.School of Computer and Information Science, Southwest University, Chongqing 400715 2.National Science Library, Chinese Academy of Sciences, Beijing 100190 3.School of Economics and Management, Shanxi University, Taiyuan 030006
1 李亚楠, 王斌, 李锦涛. 搜索引擎查询推荐技术综述[J]. 中文信息学报, 2010, 24(6): 75-84. 2 廖振. 基于查询点击核心图的查询推荐问题研究[D]. 天津: 南开大学, 2013. 3 CaiF, de RijkeM. A survey of query auto completion in information retrieval[J]. Foundations and Trends? in Information Retrieval, 2016, 10(4): 273-363. 4 DeerwesterS. Indexing by latent semantic indexing[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407. 5 JingY, CroftW B. An association thesaurus for information retrieval[C]// Proceedings of the Conference on Intelligent Text and Image Handling. New York: ACM Press, 1994: 146-160. 6 XuJ, CroftW B. Query expansion using local and global document analysis[C]// Proceedings of the 19th ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1996: 4-11. 7 PlansangketS. New weighting schemes for document ranking and ranked query suggestion[M]. University of Essex, 2017. 8 NogueiraR, ChoK. Task-oriented query reformulation with reinforcement learning[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Strodsburg: Association for Computational Linguistics, 2017: 574-583. 9 SinghV, GargS, KaurP. Efficient algorithm for web search query reformulation using genetic algorithm[C]// Proceedings of the Conference on Computational Intelligence in Data Mining—Volume 1, Advances in Intelligent Systems and Computing. New Delhi: Springer, 2016, 410: 459-470. 10 JonesR, ReyB, MadaniO, et al. Generating query substitutions[C]// Proceedings of the 15th International Conference on World Wide Web. New York: ACM Press, 2006: 387-396. 11 ShiX, YangC C. Mining related queries from Web search engine query logs using an improved association rule mining model[J]. Journal of the American Society for Information Science and Technology, 2007, 58(12): 1871-1883. 12 FonsecaB M, GolgherP B, De MouraE S, et al. Discovering search engine related queries using association rules[J]. Journal of Web Engineering, 2003, 2(4): 215-227. 13 HuangC K, ChienL F, OyangY J. Relevant term suggestion in interactive web search based on contextual information in query session logs[J]. Journal of the Association for Information Science and Technology, 2003, 54(7): 638-649. 14 BoldiP, BonchiF, CastilloC, et al. The query-flow graph: model and applications[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 609-618. 15 BoldiP, BonchiF, CastilloC, et al. Query suggestions using query-flow graphs[C]// Proceedings of the 2009 Workshop on Web Search Click Data. New York: ACM Press, 2009: 56-63. 16 WangX, ZhaiC X. Mining term association patterns from search logs for effective query reformulation[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 479-488. 17 SzpektorI, GionisA, MaarekY. Improving recommendation for long-tail queries via templates[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 47-56. 18 AnagnostopoulosA, BecchettiL, CastilloC, et al. An optimization framework for query recommendation[C]// Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010: 161-170. 19 BaragliaR, NardiniF M, CastilloC, et al. The effects of time on query flow graph-based models for query suggestion[C]// Proceedings of Adaptivity, Personalization and Fusion of Heterogeneous Information. New York: ACM Press, 2010: 182-189. 20 BaragliaR, CastilloC, DonatoD, et al. Aging effects on query flow graphs for query suggestion[C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2009: 1947-1950. 21 李亚楠, 许晟, 王斌. 基于加权SimRank的中文查询推荐研究[J]. 中文信息学报, 2010, 24(3): 3-10. 22 朱小飞, 郭嘉丰, 程学旗, 等. 基于吸收态随机行走的两阶段效用性查询推荐方法[J]. 计算机研究与发展, 2013, 50(12): 2603-2611. 23 李竞飞, 商振国, 张鹏, 等. 融合用户实时搜索状态的自适应查询推荐模型[J]. 计算机科学与探索, 2016, 10(9): 1290-1298. 24 罗成, 刘奕群, 张敏, 等. 基于用户意图识别的查询推荐研究[J]. 中文信息学报, 2014, 28(1): 64-72. 25 MeiQ Z, ZhouD Y, ChurchK. Query suggestion using hitting time[C]// Proceedings of 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 469-478. 26 CraswellN, SzummerM. Random walks on the click graph[C]// Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2007: 23-27. 27 MaH, YangH X, KingI, et al. Learning latent semantic relations from click through data for query suggestion[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 709-718. 28 LiuY, SongR H, ChenY, et al. Adaptive query suggestion for difficult queries[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 15-24. 29 LiL, YangZ L, LiuL, et al. Query-URL bipartite based approach to personalized query recommendation[C]// Proceedings of the 23rd National Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2008: 1189-1194. 30 DengH B, KingI, LyuM R. Entropy-biased models for query representation on the click graph[C]// Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2009: 339-346. 31 BeefermanD, BergerA. Agglomerative clustering of a search engine query log[C]// Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2000: 407-416. 32 Baeza-YatesR, HurtadoC, MendozaM. Query recommendation using query logs in search engines[C]// Proceedings of International Conference on Extending Database Technology. Heidelberg: Springer, 2004: 588-596. 33 吴家丽. 基于用户意图识别的查询重构研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. 34 JiangD, LeungK W T, VoseckyJ, et al. Personalized Query Suggestion with Diversity Awareness[C]// Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE, 2014: 400-411. 35 张乃洲. 基于时间点击图挖掘的查询建议方法[J]. 计算机工程, 2015, 41(5): 191-196. 36 SongY, HeL W. Optimal rare query suggestion with implicit user feedback[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM Press, 2010: 901-910. 37 SejalD, ShaileshK G, TejaswiV, et al. Query click and text similarity graph for query suggestions[M]// Machine Learning and Data Mining in Pattern Recognition. Heidelberg: Springer, 2015: 328-341. 38 YeF Y, SunJ. Combining query ambiguity and query-URL strength for log-based query suggestion[C]// Proceedings of International Conference on Swarm Intelligence. Heidelberg: Springer, 2016: 590-597. 39 CaoH H, JiangD X, PeiJ, et al. Context-aware query suggestion by mining click-through and session data[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 875-883. 40 SordoniA, BengioY, VahabiH, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2015: 553-562. 41 DehghaniM, RotheS, AlfonsecaE, et al. Learning to attend, copy, and generate for session-based query suggestion[C]// Proceedings of the 26th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2017: 1747-1756. 42 JiangJ Y, WangW. RIN: Reformulation Inference Network for context-aware query suggestion[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 197-206. 43 LiuY Q, MiaoJ W, ZhangM, et al. How do users describe their information need: Query recommendation based on snippet click model[J]. Expert Systems with Applications, 2011, 38(11): 13847-13856. 44 石雁, 李朝锋. 基于朴素贝叶斯点击预测的查询推荐方法[J]. 计算机应用与软件, 2016, 33(10): 19-23. 45 GuoJ F, ZhuX F, LanY Y, et al. Modeling users’ search sessions for high utility query recommendation[J]. Information Retrieval Journal, 2017, 20(1): 4-24. 46 QiS Y, WuD M, MamoulisN. Location aware keyword query suggestion based on document proximity[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 82-97. 47 LuccheseC, OrlandoS, PeregoR, et al. Identifying task-based sessions in search engine query logs[C]// Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2011: 277-286. 48 LiaoZ, SongY, HeL W, et al. Evaluating the effectiveness of search task trails[C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM Press, 2012: 489-498. 49 FeildH, AllanJ. Task-aware query recommendation[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 83-92. 50 OzertemU, ChapelleO, DonmezP, et al. Learning to suggest: a machine learning framework for ranking query suggestions[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 25-34. 51 GoelS, BroderA, GabrilovichE, et al. Anatomy of the long tail: ordinary people with extraordinary tastes[C]// Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2010: 201-210. 52 SantosR L T, MacdonaldC, OunisI. Learning to rank query suggestions for adhoc and diversity search[J]. Information Retrieval, 2013, 16(4): 429-451. 53 GarigliottiD, BalogK. Generating query suggestions to support task-based search[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 1153-1156. 54 LiuJ W, LiQ S, LinY S, et al. A query suggestion method based on random walk and topic concepts[C]// Proceedings of IEEE/ACIS 16th International Conference on Computer and Information Science. IEEE, 2017: 251-256. 55 HuangZ P, CautisB, ChengR, et al. KB-enabled query recommendation for long-tail queries[C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2016: 2107-2112. 56 HuangZ P, CautisB, ChengR, et al. Entity-based query recommendation for long-tail Queries[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(6): Article No. 64. 57 BonchiF, PeregoR, SilvestriF, et al. Recommendations for the long tail by term-query graph[C]// Proceedings of the 20th International Conference Companion on World Wide Web. New York: ACM Press, 2011: 15-16. 58 白露, 郭嘉丰, 曹雷, 等. 基于查询意图的长尾查询推荐[J]. 计算机学报, 2013, 36(3): 636-642. 59 刘钰锋, 李仁发. 基于Term-Query-URL异构信息网络的查询推荐[J]. 湖南大学学报(自然科学版), 2014, 41(5): 106-112. 60 ChenY, ZhangY Q. A personalised query suggestion agent based on query-concept bipartite graphs and Concept Relation Trees[J]. International Journal of Advanced Intelligence Paradigms, 2009, 1(4): 398-417. 61 BingL D, LamW, WongT L, et al. Web query reformulation via joint modeling of latent topic dependency and term context[J]. ACM Transactions on Information Systems, 2015, 33(2): Article No. 6. 62 ChenW Y, CaiF, ChenH H, et al. Personalized query suggestion diversification[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 817-820. 63 张晓娟. 利用嵌入方法实现个性化查询重构[J]. 情报学报, 2018, 37(6): 621-630. 64 ChenW Y, HaoZ P, ShaoT H, et al. Personalized query suggestion based on user behavior[J]. International Journal of Modern Physics C, 2018, 29(4): 1850036. 65 王卫国, 徐炜民. 基于潜在语义分析的个性化查询扩展模型[J]. 计算机工程, 2010, 36(21): 43-45. 66 石雁, 李朝锋. 基于协同相似计算的查询推荐[J]. 计算机工程, 2016, 42(8): 188-193. 67 孙达明, 张斌, 张书波, 等. 面向差异化搜索背景的查询推荐方法[J]. 计算机工程, 2016, 42(11): 202-206. 68 DouZ C, SongR H, WenJ R. A large-scale evaluation and analysis of personalized search strategies[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007: 581-590. 69 CaiF, de RijkeM. Selectively personalizing query auto-completion[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2016: 993-996. 70 MaH, LyuM R, KingI. Diversifying query suggestion results[C]// Proceedings of the 24th AAAI Coneference on Artificial Intelligence. Palo Alto: AAAI Press, 2010: 1399-1404. 71 BordinoI, CastilloC, DonatoD, et al. Query similarity by projecting the query-flow graph[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2010: 515-522. 72 SongY, ZhouD Y, HeL W. Post-ranking query suggestion by diversifying search results[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 815-824. 73 ZhuX F, GuoJ F, ChengX Q, et al. A unified framework for recommending diverse and relevant queries[C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM Press, 2011: 37-46. 74 HuH, ZhangM X, HeZ Y, et al. Diversifying query suggestions by using topics from Wikipedia[C]// Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies. Washington, DC: IEEE Computer Society, 2013: 139-146. 75 DingH, ZhangS, GarigliottiD, et al. Generating high-quality query suggestion candidates for task-based search[C]// Proceedings of the 40th European Conference on Information Retrieval. Heidelberg: Springer, 2018: 625-631. 76 KimY, CroftW B. Diversifying query suggestions based on query documents[C]// Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2014: 891-894. 77 ZhengH T, ZhaoJ, ZhangY C, et al. An ontology-based approach to query suggestion diversification[C]// Proceedings of the International Conference on Neural Information Processing. Heidelberg: Springer, 2014: 437-444. 78 任鹏杰, 陈竹敏, 马军, 等. 一种综合语义和时效性意图的检索结果多样化方法[J]. 计算机学报, 2015, 38(10): 2076-2091. 79 GuptaD, BerberichK. Diversifying search results using time[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2016: 789-795. 80 NguyenT N, KanhabuaN. Leveraging dynamic query subtopics for time-aware search result diversification[C]// Proceedings of the European Conference on Information Retrieval. Heidelberg: Springer, 2014: 222-234. 81 ZhangX J, PengL. Time-aware diversified query suggestion[C]// Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. New York: ACM Press, 2018: 399-400. 82 朱小飞, 郭嘉丰, 程学旗, 等. 基于流形排序的查询推荐方法[J]. 中文信息学报, 2011, 25(2): 38-44. 83 JainA, OzertemU, VelipasaogluE. Synthesizing high utility suggestions for rare web search queries[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 805-814. 84 BhatiaS, MajumdarD, MitraP. Query suggestions in the absence of query logs[C]// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 795-804. 85 MaZ R, ChenY, SongR H, et al. New assessment criteria for query suggestion[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2012: 1109-1110. 86 YanX H, GuoJ F, ChengX Q. Context-aware query recommendation by learning high-order relation in query logs[C]// Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2011: 2073-2076. 87 SongY, ZhouD Y, HeL W. Query suggestion by constructing term-transition graphs[C]// Proceedings of the Fifth ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2012: 353-362. 88 ChenW Y, CaiF, ChenH H, et al. Attention-based hierarchical neural query suggestion[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2018: 1093-1096. 89 NallapatiR, ShahC. Evaluating the quality of query refinement suggestions in information retrieval[EB/OL]. [2018-09-01]. http: //maroo. cs. umass. edu/getpdf. php?id=663. 90 MiyanishiT, SakaiT. Time-aware structured query suggestion[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2013: 809-812.