叶光辉, 谭启韬, 武川, 宋孝英, 李松烨. 融合对比学习的多阶段文献推荐双塔模型[J]. 情报学报, 2025, 44(7): 859-868.
Ye Guanghui, Tan Qitao, Wu Chuan, Song Xiaoying, Li Songye. A Two-tower Model for Multistage Literature Recommendation Incorporating Comparative Learning. 情报学报, 2025, 44(7): 859-868.
1 范圆圆, 王曰芬. 基于学术社交网络用户关系的文献搜索推荐研究[J]. 现代情报, 2021, 41(9): 32-39. 2 李亚梅, 秦春秀, 马续补. 基于科研人员情境化主题偏好的科技文献协同推荐研究[J]. 情报理论与实践, 2021, 44(12): 180-189. 3 Zhu Y F, Lin Q K, Lu H, et al. Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks[J]. Knowledge-Based Systems, 2021, 215: 106744. 4 Bansal T, Belanger D, McCallum A. Ask the GRU: multi-task learning for deep text recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM Press, 2016: 107-114. 5 Wu L K, Zheng Z, Qiu Z P, et al. A survey on large language models for recommendation[J]. World Wide Web, 2024, 27(5): Article No.60. 6 Zhu Y T, Yuan H Y, Wang S T, et al. Large language models for information retrieval: a survey[OL]. (2024-09-04). https://arxiv.org/pdf/2308.07107. 7 Prince M H, Chan H, Vriza A, et al. Opportunities for retrieval and tool augmented large language models in scientific facilities[J]. NPJ Computational Materials, 2024, 10(1): Article No.251. 8 Tan Z X, Zeng Z N, Zeng Q K, et al. Can large language models understand preferences in personalized recommendation?[OL]. (2025-01-23). https://arxiv.org/pdf/2501.13391. 9 Luo S C, Yao Y X, He B W, et al. Integrating large language models into recommendation via mutual augmentation and adaptive aggregation[OL]. (2024-01-25). https://arxiv.org/pdf/2401.13870. 10 Wang Z Y, Liu Y, Yang J J, et al. A personalization-oriented academic literature recommendation method[J]. Data Science Journal, 2015, 14: Article No.17. 11 Philip S, Shola P B, Ovye A. Application of content-based approach in research paper recommendation system for a digital library[J]. International Journal of Advanced Computer Science and Applications, 2014, 5(10): 051006. 12 Pudota N, Dattolo A, Baruzzo A, et al. Automatic keyphrase extraction and ontology mining for content-based tag recommendation[J]. International Journal of Intelligent Systems, 2010, 25(12): 1158-1186. 13 Gong S J. A collaborative filtering recommendation algorithm based on user clustering and item clustering[J]. Journal of Software, 2010, 5(7): 745-752. 14 Wang H, Wang N Y, Yeung D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2015: 1235-1244. 15 Ying H C, Zhuang F Z, Zhang F Z, et al. Sequential recommender system based on hierarchical attention network[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2018: 3926-3932. 16 Tang J, Wang K. Personalized top-n sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2018: 565-573. 17 Ali Z, Qi G L, Kefalas P, et al. A graph-based taxonomy of citation recommendation models[J]. Artificial Intelligence Review, 2020, 53(7): 5217-5260. 18 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2014: 701-710. 19 Grover A, Leskovec J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 855-864. 20 Okura S, Tagami Y, Ono S, et al. Embedding-based news recommendation for millions of users[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2017: 1933-1942. 21 Guo L T, Cai X Y, Qin H H, et al. Citation recommendation with a content-sensitive DeepWalk based approach[C]//Proceedings of the 2019 International Conference on Data Mining Workshops. Piscataway: IEEE, 2019: 538-543. 22 陈帜, 张文德, 刘田. 基于图卷积神经网络的图书推荐方法研究[J]. 情报探索, 2022(10): 1-5. 23 李锴君, 牛振东, 时恺泽, 等. 基于学术知识图谱及主题特征嵌入的论文推荐方法[J]. 数据分析与知识发现, 2023, 7(5): 48-59. 24 丁恒, 任卫强, 曹高辉. 基于无监督图神经网络的学术文献表示学习研究[J]. 情报学报, 2022, 41(1): 62-72. 25 Liu Q J, Chen N, Sakai T, et al. A first look at LLM-powered generative news recommendation[OL]. (2023-08-31). https://arxiv.org/pdf/2305.06566. 26 Qiu Z P, Wu X, Gao J Y, et al. U-BERT: pre-training user representations for improved recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4320-4327. 27 Covington P, Adams J, Sargin E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM Press, 2016: 191-198. 28 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[OL]. (2013-09-07). https://arxiv.org/pdf/1301.3781. 29 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010. 30 Wang H, Chen B Y, Li W J. Collaborative topic regression with social regularization for tag recommendation[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2013: 2702-2708.