朱庆华, 陈琼, 陆冬梅, 王雷, 宋士杰, 赵宇翔, 赵月华. 互联网环境下失真健康信息研究进展[J]. 情报学报, 2023, 42(9): 1125-1138.
Zhu Qinghua, Chen Qiong, Lu Dongmei, Wang Lei, Song Shijie, Zhao Yuxiang, Zhao Yuehua. Research on Health Disinformation on the Internet. 情报学报, 2023, 42(9): 1125-1138.
1 宋士杰, 赵宇翔, 宋小康, 等. 互联网环境下失真健康信息可信度判断的影响因素研究[J]. 中国图书馆学报, 2019, 45(4): 72-85. 2 李月琳, 张秀, 王姗姗. 社交媒体健康信息质量研究: 基于真伪健康信息特征的分析[J]. 情报学报, 2018, 37(3): 294-304. 3 人民网-舆情频道. 非常时刻别被谣言击中! 分类辟谣指南来了![EB/OL]. (2020-02-03) [2020-02-22]. http://sd.people.com.cn/n2/2020/0203/c373025-33759323.html. 4 Vosoughi S, Roy D, Aral S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. 5 Swire-Thompson B, Lazer D. Public health and online misinformation: challenges and recommendations[J]. Annual Review of Public Health, 2020, 41: 433-451. 6 维基百科. 社交媒体[EB/OL]. [2020-02-09]. https://zh.wikipedia.org/wiki/%E7%A4%BE%E4%BC%9A%E5%8C%96%E5%AA%92%E4%BD%93. 7 Krishna A, Thompson T L. Misinformation about health: a review of health communication and misinformation scholarship[J]. American Behavioral Scientist, 2019, 65(2): 316-332. 8 Nyhan B, Reifler J. When corrections fail: the persistence of political misperceptions[J]. Political Behavior, 2010, 32(2): 303-330. 9 Wardle C, Derakhshan H. Information disorder: toward an interdisciplinary framework for research and policy making[R]. Brussels: Council of Europe, 2017: 1-107. 10 Wang Y X, McKee M, Torbica A, et al. Systematic literature review on the spread of health-related misinformation on social media[J]. Social Science & Medicine, 2019, 240: 112552. 11 Peterson W A, Gist N P. Rumor and public opinion[J]. American Journal of Sociology, 1951, 57(2): 159-167. 12 巢乃鹏, 黄娴. 网络传播中的“谣言”现象研究[J]. 情报理论与实践, 2004, 27(6): 586-589, 575. 13 Loftus E F, Hoffman H G. Misinformation and memory: the creation of new memories[J]. Journal of Experimental Psychology: General, 1989, 118(1): 100-104. 14 Ho K K W, Chan J Y, Chiu D K W. Fake news and misinformation during the pandemic: what we know and what we do not know[J]. IT Professional, 2022, 24(2): 19-24. 15 Suarez-Lledo V, Alvarez-Galvez J. Assessing the role of social bots during the COVID-19 pandemic: infodemic, disagreement and criticism[J]. Journal of Medical Internet Research, 2022, 24(8): e36085. 16 Ruiz-Nú?ez C, Segado-Fernández S, Jiménez-Gómez B, et al. Bots’ activity on COVID-19 pro and anti-vaccination networks: analysis of Spanish-written messages on Twitter[J]. Vaccines, 2022, 10(8): 1240. 17 Swire-Thompson B, Lazer D. Reducing health misinformation in science: a call to arms[J]. The ANNALS of the American Academy of Political and Social Science, 2022, 700(1): 124-135. 18 Ramsbottom A, van Schalkwyk M C I, Carters-White L, et al. Food as harm reduction during a drinking session: reducing the harm or normalising harmful use of alcohol? A qualitative comparative analysis of alcohol industry and non-alcohol industry-funded guidance[J]. Harm Reduction Journal, 2022, 19(1): 66. 19 Zhao Y H, Da J W, Yan J Q. Detecting health misinformation in online health communities: incorporating behavioral features into machine learning based approaches[J]. Information Processing & Management, 2021, 58(1): 102390. 20 Zhang S, Ma F C, Liu Y M, et al. Identifying features of health misinformation on social media sites: an exploratory analysis[J]. Library Hi Tech, 2022, 40(5): 1384-1401. 21 Zheng X A, Wu S W, Nie D. Online health misinformation and corrective messages in China: a comparison of message features[J]. Communication Studies, 2021, 72(3): 474-489. 22 Xu Z, Guo H. Using text mining to compare online pro- and anti-vaccine headlines: word usage, sentiments, and online popularity[J]. Communication Studies, 2018, 69(1): 103-122. 23 Greer J, Fitzgerald K, Vijaykumar S. Narrative elaboration makes misinformation and corrective information regarding COVID-19 more believable[J]. BMC Research Notes, 2022, 15(1): Article No.235. 24 Desai A N, Ruidera D, Steinbrink J M, et al. Misinformation and disinformation: the potential disadvantages of social media in infectious disease and how to combat them[J]. Clinical Infectious Diseases, 2022, 74(suppl_3): e34-e39. 25 Warner E L, Barbati J L, Duncan K L, et al. Vaccine misinformation types and properties in Russian troll tweets[J]. Vaccine, 2022, 40(6): 953-960. 26 Quinn E K, Fazel S S, Peters C E. The instagram infodemic: cobranding of conspiracy theories, coronavirus disease 2019 and authority-questioning beliefs[J]. Cyberpsychology, Behavior and Social Networking, 2021, 24(8): 573-577. 27 Teplinsky E, Ponce S B, Drake E K, et al. Online medical misinformation in cancer: distinguishing fact from fiction[J]. JCO Oncology Practice, 2022, 18(8): 584-589. 28 Wilner T, Holton A. Breast cancer prevention and treatment: misinformation on pinterest, 2018[J]. American Journal of Public Health, 2020, 110(S3): S300-S304. 29 Chen K L, Luo Y N, Hu A Y, et al. Characteristics of misinformation spreading on social media during the COVID-19 outbreak in China: a descriptive analysis[J]. Risk Management and Healthcare Policy, 2021, 14: 1869-1879. 30 Broniatowski D A, Kerchner D, Farooq F, et al. Twitter and Facebook posts about COVID-19 are less likely to spread misinformation compared to other health topics[J]. PLoS One, 2022, 17(1): e0261768. 31 Heley K, Gaysynsky A, King A J. Missing the bigger picture: the need for more research on visual health misinformation[J]. Science Communication, 2022, 44(4): 514-527. 32 Loeb S, Sengupta S, Butaney M, et al. Dissemination of misinformative and biased information about prostate cancer on YouTube[J]. European Urology, 2019, 75(4): 564-567. 33 Zhou J, Xiang H L, Xie B J. Better safe than sorry: a study on older adults’ credibility judgments and spreading of health misinformation[J]. Universal Access in the Information Society, 2023, 22: 957-966. 34 Pickles K, Cvejic E, Nickel B, et al. COVID-19 misinformation trends in Australia: prospective longitudinal national survey[J]. Journal of Medical Internet Research, 2021, 23(1): e23805. 35 Chong S K, Ali S H, Doàn L N, et al. Social media use and misinformation among Asian Americans during COVID-19[J]. Frontiers in Public Health, 2022, 9: 764681. 36 Baines A, Seo H, Ittefaq M, et al. Race/ethnicity, online information and COVID-19 vaccination: study of minority immigrants’ Internet use for health-related information[J]. Convergence, 2023, 29(2): 268-287. 37 Stewart R, Madonsela A, Tshabalala N, et al. The importance of social media users’ responses in tackling digital COVID-19 misinformation in Africa[J]. Digital Health, 2022, 8. DOI: 10.1177/20552076221085070. 38 Nielsen-Bohlman L, Panzer A M, Kindig D A. Health literacy: a prescription to end confusion[M]. Washington, D.C.: National Academies Press, 2004. 39 Wang Y. Systematic review on the social mechanism of health misinformation dissemination in the Internet era[J]. European Journal of Public Health, 2018, 28(suppl_4): cky213. 194. 40 Scherer L D, McPhetres J, Pennycook G, et al. Who is susceptible to online health misinformation? A test of four psychosocial hypotheses[J]. Health Psychology, 2021, 40(4): 274-284. 41 McMillan S J, Macias W. Strengthening the safety net for online seniors: factors influencing differences in health information seeking among older Internet users[J]. Journal of Health Communication, 2008, 13(8): 778-792. 42 Ma T J, Atkin D. User generated content and credibility evaluation of online health information: a meta analytic study[J]. Telematics and Informatics, 2017, 34(5): 472-486. 43 Berriche M, Altay S. Internet users engage more with phatic posts than with health misinformation on Facebook[J]. Palgrave Communications, 2020, 6: Article No.71. 44 Pan W J, Liu D Y, Fang J. An examination of factors contributing to the acceptance of online health misinformation[J]. Frontiers in Psychology, 2021, 12: 630268. 45 Chou W Y S, Gaysynsky A, Vanderpool R C. The COVID-19 misinfodemic: moving beyond fact-checking[J]. Health Education & Behavior, 2021, 48(1): 9-13. 46 Jiang S H. The roles of worry, social media information overload, and social media fatigue in hindering health fact-checking[J]. Social Media + Society, 2022, 8(3). DOI: 10.1177/20563051221113070. 47 Jiang S H, Liu P L, Ngien A, et al. The effects of worry, risk perception, information-seeking experience, and trust in misinformation on COVID-19 fact-checking: a survey study in China[J]. Chinese Journal of Communication, 2023, 16(2): 132-149. 48 Sui Y J, Zhang B. Determinants of the perceived credibility of rebuttals concerning health misinformation[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1345. 49 Wu Y Y, Kuru O, Campbell S W, et al. Explaining health misinformation belief through news, social, and alternative health media use: the moderating roles of need for cognition and faith in intuition[J]. Health Communication, 2023, 38(7): 1416-1429. 50 Keselman A, Browne A C, Kaufman D R. Consumer health information seeking as hypothesis testing[J]. Journal of the American Medical Informatics Association, 2008, 15(4): 484-495. 51 Seo H, Faris R. Special section on comparative approaches to mis/disinformation: introduction[J]. International Journal of Communication, 2021, 15: 1165-1172. 52 Tang L, Fujimoto K, Amith M T, et al. “Down the rabbit hole” of vaccine misinformation on YouTube: network exposure study[J]. Journal of Medical Internet Research, 2021, 23(1): e23262. 53 Shin J, Valente T. Algorithms and health misinformation: a case study of vaccine books on Amazon[J]. Journal of Health Communication, 2020, 25(5): 394-401. 54 Chou W Y S, Oh A, Klein W M P. Addressing health-related misinformation on social media[J]. The Journal of the American Medical Association, 2018, 320(23): 2417-2418. 55 Safarnejad L, Xu Q, Ge Y R, et al. A multiple feature category data mining and machine learning approach to characterize and detect health misinformation on social media[J]. IEEE Internet Computing, 2021, 25(5): 43-51. 56 Safarnejad L, Xu Q, Ge Y R, et al. Contrasting misinformation and real-information dissemination network structures on social media during a health emergency[J]. American Journal of Public Health, 2020, 110(S3): S340-S347. 57 Del Vicario M, Bessi A, Zollo F, et al. The spreading of misinformation online[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3): 554-559. 58 Seymour B, Getman R, Saraf A, et al. When advocacy obscures accuracy online: digital pandemics of public health misinformation through an antifluoride case study[J]. American Journal of Public Health, 2015, 105(3): 517-523. 59 Nazar S, Pieters T. Plandemic revisited: a product of planned disinformation amplifying the COVID-19 “infodemic”[J]. Frontiers in Public Health, 2021, 9: 649930. 60 宋士杰, 赵宇翔, 朱庆华. iField视域下的信息可信度研究: 概念溯源、主题演化与未来展望[J]. 中国图书馆学报, 2022, 48(1): 107-126. 61 Greenhalgh T. How to read a paper: the basics of evidence-based medicine[M]. Hoboken: John Wiley & Sons, 2014. 62 Samuel H W, Za?ane O R. MedFact: towards improving veracity of medical information in social media using applied machine learning[C]// Proceedings of the 31st Canadian Conference on Artificial Intelligence. Cham: Springer, 2018: 108-120. 63 Park M. HealthTrust: assessing the trustworthiness of healthcare information on the Internet[D]. Lawrence: University of Kansas, 2013. 64 Yang F, Liu Y, Yu X H, et al. Automatic detection of rumor on Sina Weibo[C]// Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. New York: ACM Press, 2012: Article No.13. 65 Jin Z W, Cao J, Zhang Y D, et al. News verification by exploiting conflicting social viewpoints in microblogs[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2972-2978. 66 Acemoglu D, Ozdaglar A, ParandehGheibi A. Spread of (mis)information in social networks[J]. Games and Economic Behavior, 2010, 70(2): 194-227. 67 Sicilia R, Giudice S L, Pei Y L, et al. Health-related rumour detection on Twitter[C]// Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE, 2017: 1599-1606. 68 Kinsora A, Barron K, Mei Q Z, et al. Creating a labeled dataset for medical misinformation in health forums[C]// Proceedings of the 2017 IEEE International Conference on Healthcare Informatics. Piscataway: IEEE, 2017: 456-461. 69 Ghenai A, Mejova Y. Catching zika fever: application of crowdsourcing and machine learning for tracking health misinformation on Twitter[C]// Proceedings of the 2017 IEEE International Conference on Healthcare Informatics. Piscataway: IEEE, 2017: 518. 70 Deb A, Majmundar A, Seo S, et al. Social bots for online public health interventions[C]// Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2018: 186-189. 71 Sicilia R, Lo Giudice S, Pei Y L, et al. Twitter rumour detection in the health domain[J]. Expert Systems with Applications, 2018, 110: 33-40. 72 Liu Y, Yu K, Wu X F, et al. Analysis and detection of health-related misinformation on Chinese social media[J]. IEEE Access, 2019, 7: 154480-154489. 73 Li J X. Detecting false information in medical and healthcare domains: a text mining approach[C]// Proceedings of the 7th International Conference on Smart Health. Cham: Springer, 2019: 236-246. 74 Hou R, Pérez-Rosas V, Loeb S, et al. Towards automatic detection of misinformation in online medical videos[C]// Proceedings of the 2019 International Conference on Multimodal Interaction. New York: ACM Press, 2019: 235-243. 75 Choudrie J, Banerjee S, Kotecha K, et al. Machine learning techniques and older adults processing of online information and misinformation: a COVID 19 study[J]. Computers in Human Behavior, 2021, 119: 106716. 76 Afsana F, Kabir M A, Hassan N, et al. Automatically assessing quality of online health articles[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(2): 591-601. 77 Du J C, Preston S, Sun H X, et al. Using machine learning-based approaches for the detection and classification of human papillomavirus vaccine misinformation: infodemiology study of reddit discussions[J]. Journal of Medical Internet Research, 2021, 23(8): e26478. 78 Endo P T, Santos G L, de Lima Xavier M E, et al. Illusion of truth: analysing and classifying COVID-19 fake news in Brazilian Portuguese language[J]. Big Data and Cognitive Computing, 2022, 6(2): 36. 79 Upadhyay R, Pasi G, Viviani M. Vec4Cred: a model for health misinformation detection in web pages[J]. Multimedia Tools and Applications, 2023, 82(4): 5271-5290. 80 张帅. 社交媒体虚假健康信息特征识别[J]. 图书情报工作, 2021, 65(9): 70-78. 81 Li Y L, Zhang X, Wang S S. Fake vs. real health information in social media in China[J]. Proceedings of the Association for Information Science and Technology, 2017, 54(1): 742-743. 82 Di Sotto S, Viviani M. Health misinformation detection in the social web: an overview and a data science approach[J]. International Journal of Environmental Research and Public Health, 2022, 19(4): 2173. 83 Song S J, Zhang Y, Yu B. Interventions to support consumer evaluation of online health information credibility: a scoping review[J]. International Journal of Medical Informatics, 2021, 145: 104321. 84 Shah Z, Surian D, Dyda A, et al. Automatically appraising the credibility of vaccine-related web pages shared on social media: a Twitter surveillance study[J]. Journal of Medical Internet Research, 2019, 21(11): e14007. 85 Ghenai A, Mejova Y. Fake cures: user-centric modeling of health misinformation in social media[J]. Proceedings of the ACM on Human-Computer Interaction, 2018, 2(CSCW): Article No.58. 86 朱宏淼, 齐佳音, 靳祯, 等. 医联网环境下失真健康信息传播动力学模型与干预策略研究[J]. 系统工程理论与实践, 2022, 42(7): 1927-1940. 87 Shams A B, Hoque Apu E, Rahman A, et al. Web search engine misinformation notifier extension (SEMiNExt): a machine learning based approach during COVID-19 pandemic[J]. Healthcare, 2021, 9(2): 156. 88 Pandey R, Gautam V, Pal R, et al. A machine learning application for raising WASH awareness in the times of COVID-19 pandemic[J]. Scientific Reports, 2022, 12: Article No.810. 89 阮智慧, 钱爱兵. 突发公共卫生事件中伪健康信息传播的系统动力学模型研究[J]. 医学信息学杂志, 2022, 43(3): 18-24. 90 Bin Naeem S, Kamel Boulos M N. COVID-19 misinformation online and health literacy: a brief overview[J]. International Journal of Environmental Research and Public Health, 2021, 18(15): 8091. 91 Armstrong-Heimsoth A, Johnson M L, McCulley A, et al. Good Googling: a consumer health literacy program empowering parents to find quality health information online[J]. Journal of Consumer Health on the Internet, 2017, 21(2): 111-124. 92 邓胜利, 蔡芸娜. 国外高校图书馆参与虚假健康信息治理调研及启示[J]. 图书情报工作, 2022, 66(9): 23-32. 93 黄雨婷, 冯婕. 信息素养视域下的虚假信息甄别: 国际进展与我国对策[J]. 图书情报知识, 2021(2): 121-132. 94 邓胜利, 孙瑾杰. 图书馆参与虚假健康信息治理的价值、阻滞因素和实现路径[J]. 图书情报工作, 2022, 66(9): 14-22. 95 Mitsuhashi T. Effects of two-week e-learning on eHealth literacy: a randomized controlled trial of Japanese Internet users[J]. PeerJ, 2018, 6: e5251. 96 周晓英, 宋丹, 张秀梅. 健康素养与健康信息传播利用的国家战略研究[J]. 图书与情报, 2015(4): 2-10. 97 Chapman E, Haby M M, Toma T S, et al. Knowledge translation strategies for dissemination with a focus on healthcare recipients: an overview of systematic reviews[J]. Implementation Science, 2020, 15(1): Article No.14. 98 Trethewey S P. Strategies to combat medical misinformation on social media[J]. Postgraduate Medical Journal, 2020, 96(1131): 4-6. 99 Krohn K M, Yu G, Lieber M, et al. The stanford global health media fellowship: training the next generation of physician communicators to fight health misinformation[J]. Academic Medicine, 2022, 97(7): 1004-1008. 100 Krohn K M, Crichlow R, McKinney Z J, et al. Introducing mass communications strategies to medical students: a novel short session for fourth-year students[J]. Academic Medicine, 2022, 97(7): 999-1003. 101 Armstrong P W, Naylor C D. Counteracting health misinformation: a role for medical journals?[J]. JAMA, 2019, 321(19): 1863-1864. 102 Adams R C, Challenger A, Bratton L, et al. Claims of causality in health news: a randomised trial[J]. BMC Medicine, 2019, 17(1): Article No.91. 103 Yang Q H, Luo Z F, Li M Y, et al. Understanding the landscape and propagation of COVID-19 misinformation and its correction on Sina Weibo[J]. Global Health Promotion, 2022, 29(1): 44-52. 104 Vraga E K, Bode L. Using expert sources to correct health misinformation in social media[J]. Science Communication, 2017, 39(5): 621-645. 105 Vraga E K, Bode L. Correcting what’s true: testing competing claims about health misinformation on social media[J/OL]. American Behavioral Scientist, (2022-08-25). https://doi.org/10.1177/00027642221118252. 106 Vraga E K, Bode L. I do not believe you: how providing a source corrects health misperceptions across social media platforms[J]. Information, Communication & Society, 2018, 21(10): 1337-1353. 107 Hermansyah A, Sukorini A I, Rahayu T P, et al. Exploring pharmacist experience and acceptance for debunking health misinformation in the social media[J]. Pharmacy Education, 2021, 21(2): 42-47. 108 Bautista J R, Zhang Y, Gwizdka J. Healthcare professionals’ acts of correcting health misinformation on social media[J]. International Journal of Medical Informatics, 2021, 148: 104375. 109 Walter N, Brooks J J, Saucier C J, et al. Evaluating the impact of attempts to correct health misinformation on social media: a meta-analysis[J]. Health Communication, 2021, 36(13): 1776-1784. 110 吴世文, 王一迪, 郑夏. 可信度的博弈: 伪健康信息与纠正性信息的信源及其叙事[J]. 全球传媒学刊, 2019, 6(3): 73-91. 111 Bautista J R, Zhang Y, Gwizdka J. Predicting healthcare professionals’ intention to correct health misinformation on social media[J]. Telematics and Informatics, 2022, 73: 101864. 112 Bode L, Vraga E K. See something, say something: correction of global health misinformation on social media[J]. Health Communication, 2018, 33(9): 1131-1140. 113 杨洸, 闻佳媛. 微信朋友圈的虚假健康信息纠错: 平台、策略与议题之影响研究[J]. 新闻与传播研究, 2020, 27(8): 26-43, 126. 114 MacFarlane D, Tay L Q, Hurlstone M J, et al. Refuting spurious COVID-19 treatment claims reduces demand and misinformation sharing[J]. Journal of Applied Research in Memory and Cognition, 2021, 10(2): 248-258. 115 Vraga E K, Bode L. Correction as a solution for health misinformation on social media[J]. American Journal of Public Health, 2020, 110(S3): S278-S280. 116 Dan V, Dixon G N. Fighting the infodemic on two fronts: reducing false beliefs without increasing polarization[J]. Science Communication, 2021, 43(5): 674-682. 117 Allington D, Duffy B, Wessely S, et al. Health-protective behaviour, social media usage and conspiracy belief during the COVID-19 public health emergency[J]. Psychological Medicine, 2021, 51(10): 1763-1769. 118 Syed-Abdul S, Fernandez-Luque L, Jian W S, et al. Misleading health-related information promoted through video-based social media: anorexia on YouTube[J]. Journal of Medical Internet Research, 2013, 15(2): e30. 119 Pant S, Deshmukh A, Murugiah K, et al. Assessing the credibility of the “YouTube approach” to health information on acute myocardial infarction[J]. Clinical Cardiology, 2012, 35(5): 281-285.