|
|
Correlation Analysis of Basic Research and Technological Innovation in Synthetic Biology |
Zhang Xue1,2, Zhang Zhiqiang1,2, Chen Xiujuan1,2, Guo Chen3 |
1.Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041 2.Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 3.School of Information Management, Wuhan University, Wuhan 430072 |
|
|
Abstract This study discusses the relationship between basic research and technological innovation in the field of synthetic biology based on a cross-reference analysis of papers and patents, provides suggestions for improving the ability of basic research and technological innovations in this field, and supports the integration strategy of scientific and technological resources. Academic papers and patents are used as the substitute indicators of basic research and technological innovation. A total of 9033 papers and 5233 patents collected from the Web of Science and United States patent and trademark office are used as the research object. In order to comprehensively analyze the relationship between basic research and technological innovation in the field of synthetic biology, we analyze patent and paper citations from four perspectives: the overall distribution of citations, scientific and technical linkage, the time lag of citations, and the cycle time; and we analyze the topic distribution from the paper-patent mixed citation. Approximately 97% of technological innovations in the field of synthetic biology around the globe have cited the theoretical results of basic research, while only 4% of basic research have cited the technological innovations. The overall fluctuation of the science linkage is not volatile, but the technology linkage has not exhibited a stable trend. The science linkage and technology linkage of the United States are better than those of other countries, while that of China is relatively backward. The patents are more likely to cite other patents with a time lag of less than 15 years and papers with a time lag of less than 13 years. The papers are more likely to cite patents with a time lag of less than 6 years and papers with a time lag of less than 6 years. The technical cycle and scientific cycle of a patent are 13.92 and 12.28 years, respectively, while those of a paper are 10.85 and 6.99 years, respectively. Basic research in the field of synthetic biology shows a development trend similar to that of technological innovations; for example, both focus on the synthesis of genes and genomes, gene editing, and other aspects of research, while the basic research focuses on more areas and fields. Therefore, in the future, strengthening the application of technological innovation results in basic research and promoting the output of new technological innovation results are necessary. Accelerating the speed of transformation from basic research as well as previous technological innovations and citing the highly innovative results of basic research and technological innovations are vital for promoting innovation.
|
Received: 04 April 2019
|
|
|
|
1 李睿. 基于专利引文分析的科学-技术关联探测模型改进[D]. 北京: 中国科学院文献情报中心, 2011. 2 NarinF, HamiltonK S, OlivastroD. Linkage between agency-supported research and patented industrial technology[J]. Research Evaluation, 1995, 5(3): 183-187. 3 BergerD. What is the linkage between science and technology?[EB/OL]. [2010-01-12]. http://www.madsci.org/posts/archives/2000- 06/962045346.Sh.r.html. 4 郭慧志, 郭红燕, 施凤丹. 大脑与手: 从工业革命论科学与技术的关系[J]. 科学学研究, 2007, 25(S2): 178-183. 5 BhattacharyaS, MeyerM. Large firms and the science-technology interface Patents, patent citations, and scientific output of multinational corporations in thin films[J]. Scientometrics, 2003, 58(2): 265-279. 6 ZhaoQ J, GuanJ C. Modeling the dynamic relation between science and technology in nanotechnology[J]. Scientometrics, 2012, 90(2): 561-579. 7 NarinF, NomaE. Is technology becoming science?[J]. Scientometrics, 1985, 7(3-6): 369-381. 8 MeyerM S. Does science push technology? Patents citing scientific literature[J]. Research Policy, 2000, 29(3): 409-434. 9 赵志耘, 雷孝平. 我国生物科技领域技术创新与基础研究关联分析——从专利引文分析的角度[J]. 情报学报, 2012, 31(12): 1283-1289. 10 文晓芬. 基于专利引文的我国基础研究与技术创新的关联分析[D]. 北京: 中国科学技术信息研究所, 2011. 11 MeyerM, DebackereK, Gl?nzelW. Can applied science be ‘good science’? Exploring the relationship between patent citations and citation impact in nanoscience[J]. Scientometrics, 2010, 85(2): 527-539. 12 Gl?nzelW, MeyerM. Patents cited in the scientific literature: An exploratory study of ‘reverse’ citation relations[J]. Scientometrics, 2003, 58(2): 415-428. 13 覃佳慧, 何耶奇, 叶鹰. 科学论文和技术专利的引用时滞及循环周期研究——以富勒烯为例[J]. 情报理论与实践, 2018, 41(7): 23-25. 14 HuangM H, YangH W, ChenD Z. Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents[J]. Journal of Informetrics, 2015, 9(2): 237-249. 15 吴菲菲, 黄鲁成, 石媛嫄. 基于文献和专利相互引用的科学与技术关系分析[J]. 科学学与科学技术管理, 2013, 34(10): 13-20. 16 NoyonsE C M, van RaanA F J, GruppH, et al. Exploring the science and technology interface: Inventor-author relations in laser medicine research[J]. Research Policy, 1994, 23(4): 443-457. 17 WangG B, GuanJ C. Measuring science–technology interactions using patent citations and author-inventor links: An exploration analysis from Chinese nanotechnology[J]. Journal of Nanoparticle Research, 2011, 13(12): 6245-6262. 18 高继平, 丁堃, 滕立, 等. 专利-论文混合共被引分析法的实现及其应用——以德温特专利数据库为例[J]. 情报学报, 2012, 31(3): 317-324. 19 孙晓玲, 丁堃. 基于知识基因发现的科学与技术关系研究[J]. 情报理论与实践, 2017, 40(6): 23-26, 17. 20 任海, 刘菊秀, 罗宇宽. 科普的理论、方法与实践[M]. 北京: 中国环境科学出版社, 2005. 21 宋凯. 合成生物学导论[M]. 北京: 科学出版社, 2010. 22 刘娅, 崔伟. 从文献计量分析看世界合成生物学研究现状[J]. 世界科技研究与发展, 2012, 34(3): 527-534. 23 倪萍, 安新颖. 合成生物学研究领域文献计量分析[J]. 科技管理研究, 2016, 36(3): 261-266. 24 盛立, 刘伟, 李玉霞, 等. 合成生物学研究前沿的识别与趋势预测[J]. 军事医学, 2015(2): 143-146. 25 从文献计量和专利分析看合成生物学的发展态势[C]// 中国生物工程学会学术年会暨全国生物技术大会论文集. 北京: 中国生物工程学会, 2012: 185-186. 26 安嘉璐, 田玲, 周艳玲, 等. 基于Web of Science的合成生物学文献计量分析[J]. 现代生物医学进展, 2015, 15(1): 139-144, 170. 27 钱万强, 江海燕, 墨宏山, 等. 基于文献计量学的世界合成生物学研究发展趋势及展望[J]. 中国基础科学, 2013, 15(2): 30-35. 28 NarinF, OlivastroD. Technology indicators based on patents and patent citations[M]// Handbook of Quantitative Studies of Science and Technology. Amsterdam: Elsevier, 1988: 465-507. 29 BreitzmanA F, NarinF. Method and apparatus for choosing a stock portfolio,based on patent indicators: US6175824[P/OL]. (2001-01-16). http://www.freepatentsonline.com/6175824.html. 30 VerbeekA, DebackereK, LuwelM, et al. Linking science to technology: Using bibliographic references in patents to build linkage schemes[J]. Scientometrics, 2002, 54(3): 399-420. 31 MullisK B. Process for amplifying nucleic acid sequences: US4683202[P/OL]. 1987-07-28. http://www.freepatentsonline.com/ 4683202.html. 32 JonesP T, DearP H, FooteJ, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature, 1986, 321(6069): 522-525. 33 GrahamM W. Genetic constructs for delaying or repressing the expression of a target gene: US6573099[P/OL]. 2003-06-03. http://www.freepatentsonline.com/6573099.html. 34 FireA, XuS Q, MontgomeryM K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. 35 EppsteinD A, FelgnerP L, GadekT R, et al. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor: US4897355[P/OL]. 1990-01-30. http://www.freepatentsonline.com/4897355.html. 36 WangH H, IsaacsF J, CarrP A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. 37 ZukerM. Mfold web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Research, 2003, 31(13): 3406-3415. 38 ZhangR, LinY. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes[J]. Nucleic Acids Research, 2009, 37(Database): D455-D458. 39 刘柳, 李武德, 蔡国斌. 含鼠胚胎成纤维细胞的组织工程皮肤体外构建及大鼠移植研究[J]. 中华整形外科杂志, 2011, 27(4): 284-289. 40 BecskeiA, SerranoL. Engineering stability in gene networks by autoregulation[J]. Nature, 2000, 405(6786): 590-593. 41 AndrianantoandroE, BasuS, KarigD K, et al. Synthetic biology: New engineering rules for an emerging discipline[J]. Molecular Systems Biology, 2006, 2(1): 2006.0028. 42 MoonT S, LouC B, TamsirA, et al. Genetic programs constructed from layered logic gates in single cells[J]. Nature, 2012, 491(7423): 249-253. 43 QiL S, LarsonM H, GilbertL A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. |
|
|
|